Geomorphology as a Driver of Heavy Metal Accumulation Patterns in a Floodplain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Samplings
2.3. Laboratory Analysis
2.4. Terrain Dataset and Analysis
2.5. Statistical Analysis
3. Results
3.1. Basic Soil Properties and the Concentrations of Heavy Metals
3.2. Horizontal Pattern of Heavy Metals
3.3. Vertical Distribution of Heavy Metals
3.4. Relationship between Soil Properties and Heavy Metals
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lewin, J. Floodplain geomorphology. Prog. Phys. Geogr. 1978, 2, 408–437. [Google Scholar] [CrossRef]
- Charlton, R. Fundamentals of Fluvial Geomorphology; Charlton, R., Ed.; Routledge: London, UK, 2007; ISBN 9780203371084. [Google Scholar]
- Bridge, J.; Demicco, R. Earth Surface Processes, Landforms and Sediment Deposits; Bridge, J.S., Demicco, R.V., Eds.; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-511-45522-3. [Google Scholar]
- Bertalan, L.; Rodrigo-Comino, J.; Surian, N.; Šulc Michalková, M.; Kovács, Z.; Szabó, S.; Szabó, G.; Hooke, J. Detailed assessment of spatial and temporal variations in river channel changes and meander evolution as a preliminary work for effective floodplain management. The example of Sajó River, Hungary. J. Environ. Manag. 2019, 248, 109277. [Google Scholar] [CrossRef] [PubMed]
- Scown, M.W.; Thoms, M.C.; De Jager, N.R. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales. Geomorphology 2015, 245, 87–101. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Zhou, W.B.; Wu, D.S.; Zeng, F.P. Heavy metal contamination in sediments and floodplain topsoils of the Lean River catchment, China. Soil Sediment Contam. 2011, 20, 810–823. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Elznicová, J.; Kiss, T.; Smith, H.G. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena 2016, 144, 109–129. [Google Scholar] [CrossRef]
- Lado, L.R.; Hengl, T.; Reuter, H.I. Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database. Geoderma 2008, 148, 189–199. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Braun, M.; Szaloki, I.; Baeyens, W.; Van Grieken, R.; Leermakers, M. Tracing the metal pollution history of the Tisza River through the analysis of a sediment depth profile. Water. Air Soil Pollut. 2009, 200, 119–132. [Google Scholar] [CrossRef]
- Makovníková, J.; Pálka, B.; Širáň, M.; Kizeková, M.; Kanianska, R. The potential of regulating ecosystem service–Filtering potential foinorganic pollutants–Supplied by soils of Slovakia. Hungarian Geogr. Bull. 2019, 68, 177–185. [Google Scholar] [CrossRef]
- Krüger, F.; Meissner, R.; Gröngröft, A.; Grunewald, K. Flood induced heavy metal and arsenic contamination of Elbe river floodplain soils. Acta Hydrochim. Hydrobiol. 2005, 33, 455–465. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Salas, E.A.L. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int. J. Remote Sens. 2004, 25, 3883–3895. [Google Scholar] [CrossRef]
- Tamás, M.; Farsang, A. Determination of heavy metal fractions in the sediments of oxbow lakes to detect the human impact on the fluvial system (Tisza River, SE Hungary). Hydrol. Earth Syst. Sci. Discuss. 2016, 1–16. [Google Scholar] [CrossRef][Green Version]
- International Commission for the Protection of the Danube River. The Danube River Basin District Management Plan; ICPDR: Vienna, Austria, 2015; p. 191. [Google Scholar]
- Horowitz, A.J. A primer on trace metal-sediment chemistry. Water Supply Pap. 1986, 2277, 67. [Google Scholar]
- Salomons, W.; de Rooij, N.M.; Kerdijk, H.; Bril, J. Sediments as a source for contaminants? Hydrobiologia 1987, 149, 13–30. [Google Scholar] [CrossRef]
- Szabó, S.; Gosztonyi, G.; Babka, B.; Dócs, N.; Braun, M.; Csorba, P.; Türk, G.; Molnár, L.S.; Bakos, B.; Szabó, G.; et al. Gis database of heavy metals in the floodplain of the Tisza river. Stud. Univ. Vasile Goldis Arad Ser. Stiint. Vietii 2010, 20, 97–104. [Google Scholar]
- Lakatos, G.; Fleit, E.; Mészáros, I. Ecotoxicological studies and risk assessment on the cyanide contamination in Tisza river. Toxicol. Lett. 2003, 140–141, 333–342. [Google Scholar] [CrossRef]
- Osán, J.; Török, S.; Alföldy, B.; Alsecz, A.; Falkenberg, G.; Baik, S.Y.; Van Grieken, R. Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 123–136. [Google Scholar] [CrossRef][Green Version]
- Gosztonyi, G.; Szabó, S. Examination of heavy metal accumulation in the sediments and plants of an active floodplain near the River Tisza. Stud. Univ. Vasile Goldis Arad Ser. Stiint. Vietii 2011, 21, 119–125. [Google Scholar]
- Hamar, J.; Sárkány-Kiss, A. (Eds.) The Upper Tisa Valley; Tisza Klub & Liga Pro Europa: Szeged, Hungary, 1999. [Google Scholar]
- Sárkány-Kiss, I.; Fodorpataki, L.; Macalik, K.; Telcean, I.; Bálint, M.; Braun, M.; Papp, J.; Hamar, J. The ecological state of the Upper Tisa and the Transylvanian tributaries of the Tisa River-based on characteristics of the physico-chemical parameters, the flora and the fauna. Acta Biol. Debrecina Oecologica Hungarica 2012, 27, 147–168. [Google Scholar]
- Dezső, Z.; Szabó, S.; Bihari, Á. Investigation of the sedimentation of the active floodplain of Tisza based on gamma-spectrostropic analysis of 137Cs-isotopes. In Proceedings of the V. Kárpát-medencei Környezettudományi Konferencia, Sapientia-Erdélyi Magyar Tudományegyetem, Cluj-Napoca, Romania, 26–29 March 2009; Mócsy, I., Szacsvai, K., Urák, I., Zsigmond, A.R., Eds.; Ábel: Kolozsvár, Romania, 2009; pp. 438–443. [Google Scholar]
- Kiss, T.; Sándor, A. Land-use changes and their effect on floodplain aggradation along the Middle-Tisza River, Hungary. AGD Landsc. Environ. 2009, 3, 1–10. [Google Scholar]
- Kiss, T.; Oroszi, V.G.; Sipos, G.; Fiala, K.; Benyhe, B. Accelerated overbank accumulation after nineteenth century river regulation works: A case study on the Maros River, Hungary. Geomorphology 2011, 135, 191–202. [Google Scholar] [CrossRef]
- Kiss, T.; Balogh, M. Characteristics of Point-Bar Development under the Influence of a Dam: Case Study on the Dráva River at Sigetec, Croatia. J. Environ. Geogr. 2015, 8, 23–30. [Google Scholar] [CrossRef][Green Version]
- Vass, R. Ártérfejlődési Vizsgálatok Felső-Tiszai Mintaterületeken (Examination of Fluvial Development on Study Areas of Upper Tisza Region); Tóth könyvkereskedés és Kiadó Kft.: Nyíregyháza, Hungary, 2018; ISBN 978-615-00-1833-1. [Google Scholar]
- Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef]
- Szabó, S.; Gosztonyi, G.; Juhos, K. Statistical analysis of heavy metal content of sediment samples from the floodland of Tisza River. Hidrológiai Közlöny 2009, 89, 50–54. [Google Scholar]
- Crosato, A.; Saleh, M.S. Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf. Process. Landf. 2011, 36, 711–720. [Google Scholar] [CrossRef]
- Vietz, G.J.; Rutherfurd, I.D.; Stewardson, M.J.; Finlayson, B.L. Hydrodynamics and sedimentology of concave benches in a lowland river. Geomorphology 2012, 147–148, 86–101. [Google Scholar] [CrossRef]
- Nicholas, A.P. Modelling the continuum of river channel patterns. Earth Surf. Process. Landf. 2013, 38, 1187–1196. [Google Scholar] [CrossRef]
- Pregun, C.Z. Ecohydrological and morphological relationships of a regulated lowland river; based on field studies and hydrological modeling. Ecol. Eng. 2016, 94, 608–616. [Google Scholar] [CrossRef][Green Version]
- Ahilan, S.; Guan, M.; Sleigh, A.; Wright, N.; Chang, H. The influence of floodplain restoration on flow and sediment dynamics in an urban river. J. Flood Risk Manag. 2018, 11, S986–S1001. [Google Scholar] [CrossRef]
- Konsoer, K.M.; Rhoads, B. Analysis of shallow turbulent flows using the Hilbert-Huang transform: A tool for exploring the characteristics of turbulence and coherent flow structures. Hung. Geogr. Bull. 2018, 67, 343–359. [Google Scholar] [CrossRef][Green Version]
- Wolfenden, P.J.; Lewin, J. Distribution of metal pollutants in active stream sediments. Catena 1978, 5, 67–78. [Google Scholar] [CrossRef]
- Lewin, J.; Macklin, M.G. Metal mining and floodplain sedimentation in Britain. In International Geomorphology 1986, Proceedings of the First International Conference on Geomorphology (Part I), Manchester, UK, 15–21 September 1985; Gardiner, V., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1987; pp. 1009–1027. ISBN 978-0471914716. [Google Scholar]
- Bradley, S.; Cox, J. The significance of the floodplain to the cycling of metals in the River Derwent catchment, UK. Sci. Total Environ. 1990, 97, 441–454. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Taylor, M.P. 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK. Hydrol. Process. 1999, 13, 1087–1102. [Google Scholar] [CrossRef]
- Foulds, S.A.; Brewer, P.A.; Macklin, M.G.; Haresign, W.; Betson, R.E.; Rassner, S.M.E. Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Sci. Total Environ. 2014, 476–477, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Lewin, J.; Davies, B.E.; Wolfenden, P.J. Interactions between channel change and historic mining sediments. In River Channel Changes; Gregory, K., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1977; pp. 353–369. ISBN 0-471-99524-X-77-4342. [Google Scholar]
- Knox, J.C. Historical valley floor sedimentation in the Upper Mississippi Valley. Ann. Assoc. Am. Geogr. 1987, 77, 224–244. [Google Scholar] [CrossRef]
- Lecce, S.A.; Pavlowsky, R.T. Use of mining-contaminated sediment tracers to investigate the timing and rates of historical flood plain sedimentation. Geomorphology 2001, 38, 85–108. [Google Scholar] [CrossRef]
- Pavlowsky, R.T.; Lecce, S.A.; Owen, M.R.; Martin, D.J. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA. Geomorphology 2017, 299, 54–75. [Google Scholar] [CrossRef]
- Martin, C.W. Heavy metal concentrations in floodplain surface soils, Lahn River, Germany. Environ. Geol. 1997, 30, 119–125. [Google Scholar] [CrossRef]
- Miller, J.R. The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J. Geochem. Explor. 1997, 58, 101–118. [Google Scholar] [CrossRef]
- Szalai, Z. Trace metal pollution and microtopography in a floodplain, the Haros Island (Budapest). Geogr. Fis. Din. Quat. 1998, 21, 75–78. [Google Scholar]
- Szalai, Z.; Baloghnné Di Gléria, M.; Jakab, G.; Csuták, M.; Bádonyi, K.; Tóth, A. Physical speciation of sediment associated heavy metals in active floodplains of the Danube and Tisza rivers, Hungary. Födrajzi Értesítő 2005, 54, 61–84. [Google Scholar]
- Kotková, K.; Nováková, T.; Tůmová, S.; Kiss, T.; Popelka, J.; Faměra, M. Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphology 2019, 329, 46–57. [Google Scholar]
- Babcsányi, I.; Tamás, M.; Szatmári, J.; Hambek-Oláh, B.; Farsang, A. Assessing the impacts of the main river and anthropogenic use on the degree of metal contamination of oxbow lake sediments (Tisza River Valley, Hungary). J. Soils Sediments 2019. [Google Scholar] [CrossRef][Green Version]
- Ladd, S.C.; Marcus, W.A.; Cherry, S. Differences in trace metal concentrations among fluvial morphologic units and implications for sampling. Environ. Geol. 1998, 36, 259–270. [Google Scholar] [CrossRef]
- Miller, J.; Orbock Miller, S.M. Floodplains. In Contaminated Rivers; Springer: Berlin/Heidelberg, Germany, 2007; pp. 177–234. ISBN 978-1-4020-5602-4. [Google Scholar]
- Van Metre, P.; Horowitz, A.J. An 80-year record of sediment quality in the lower Mississippi River. Hydrol. Process. 2012, 27, 2438–2448. [Google Scholar] [CrossRef]
- Ciszewski, D.; Grygar, T.M. A Review of flood-related Storage and remobilization of heavy metal pollutants in river systems. Water. Air. Soil Pollut. 2016, 227, 227–239. [Google Scholar] [CrossRef][Green Version]
- Szabó, J.; Vass, R.; Tóth, C. Examination of fluvial development on study areas of Upper-Tisza region. Carpathian J. Earth Environ. Sci. 2012, 7, 241–253. [Google Scholar]
- Babka, B.; Futó, I.; Szabó, S. Seasonal evaporation cycle in oxbow lakes formed along the Tisza River in Hungary for flood control. Hydrol. Process. 2018, 32, 2009–2019. [Google Scholar] [CrossRef][Green Version]
- Tóth, A.; Braun, M.; Dévai, G.; Nagy, S. A Nagy-morotva rakamazi szakaszának üledékminősége (The quality of the sediments of Nagy-mortotva, Rakamaz). Hidrológiai Közlöny 1998, 78, 375–376. [Google Scholar]
- Dévai, G.; Miskolczi, M.; Jakab, T. Adatok a Nagy-morotva (Rakamaz és Tiszanagyfalu) szitakötő-faunájához (Odonata). (Data for Odonata specias of Nagy-morotva (Rakamaz and Tiszanagyfalu)). Stud. Odonatol. Hung. 2012, 14, 37–48. [Google Scholar]
- Szabó, Z.; Szabó, S.; Szabó, J.; Tomor, T.; Hunyadi, G. Felszínfejlődési szakaszok és formák vizsgálata LiDAR felmérés alapján a Tisza hullámterén (Examination of the development of land and landforms using LiDAR data in a floodplain of the Tisza River). In Proceedings of the Az Elmélet és Gyakorlat Találkozása a térinformatikában VI, Debrecen, Hungary, 28–29 May 2015; Boda, J., Ed.; Kapitális Nyomdaipari Kft.: Debrecen, Hungary, 2015; pp. 387–394. [Google Scholar]
- Szabó, Z.; Tóth, C.A.; Tomor, T.; Szabó, S. Airborne LiDAR point cloud in mapping of fluvial forms: A case study of a Hungarian floodplain. GIScience Remote Sens. 2017, 54, 862–880. [Google Scholar] [CrossRef]
- Vari, A.; Linnerooth-Bayer, J.; Ferencz, Z. Stakeholder views on flood risk management in Hungary’s Upper Tisza Basin. Risk Anal. 2003, 23, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Győri, Z.; Boros, N.; Sipos, P.; Szabó, E.B.; Kovács, K.; Horváth, M.; Takács, A.; Heltai, G. Evaluation of the heavy metal content of the Upper Tisza River floodplain soils over the last decade. Hung. J. Ind. Chem. 2015, 43, 19–24. [Google Scholar] [CrossRef][Green Version]
- Angelova, V.; Akova, V.I.; Ivanov, K.I.; Licheva, P.A. Comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soils. J. Int. Sci. Publ. Ecol. Saf. 2014, 8, 430–440. [Google Scholar]
- Thomas, G. Soil pH and Soil Acidity. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 475–489. ISBN 0-89118-825-8. [Google Scholar]
- Particle Size Analysis. In Handbook of Soil Analysis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 15–63. ISBN 978-3-540-31211-6.
- Centeri, C.; Jakab, G.; Szabó, S.; Farsang, A.; Barta, K.; Szalai, Z.; Bíró, Z. Comparison of particle-size analyzing laboratory methods. Environ. Eng. Manag. J. 2015, 14, 1125–1135. [Google Scholar] [CrossRef]
- Lima, E.S.A.; Amaral Sobrinho, N.M.B.D.; Pérez, D.V.; Coutinho, I.B. Comparing methods for extracting heavy metals from Histosols for establishing quality reference values. Rev. Bras. Cienc. Solo 2016, 40, 1–14. [Google Scholar] [CrossRef][Green Version]
- Vysetti, B.; Vummiti, D.; Roy, P.; Taylor, C.; Kamala, C.T.; Satyanarayanan, M.; Kar, P.; Subramanyam, K.S.V.; Raju, A.K.; Abburi, K. Analysis of geochemical samples by microwave plasma-AES. At. Spectrosc. 2014, 35, 65–78. [Google Scholar]
- Hawkes, S. What is a “Heavy Metal”? J. Chem. Educ. 1997, 74, 1374. [Google Scholar] [CrossRef]
- Szabó, S.; Vass, R.; Szabó, J.; Szabó, G.; Posta, J. A hullámtéri feltöltődés mennyiségi és minőségi vizsgálata a Beregi-síkon (The examination of the quality and the quantity of the floodplain aggradation on Bereg plain). In Természetföldrajzi Kutatások Magyarországon a XXI, Század Elején: Tiszteletkötet Gábris Gyula Professzor úr 70, Születésnapjára; Horváth, E., Mari, L., Eds.; ELTE TTK Földrajz- és Földtudományi Intézet Természetföldrajzi Tanszék: Budapest, Hungary, 2012; pp. 139–147. [Google Scholar]
- SH/2/6-Swiss-Hungarian Programme. Updating the flood protection plans for sections of the river Tisza under the management of the Environmental and Water Management Directorate of the Tiszántúl Region and the North Hungarian Environment and Water Directorate. Available online: https://core.ac.uk/download/pdf/43668713.pdf (accessed on 11 December 2019).
- ESRI. Arcgis Desktop: Release 10.5; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Efron, B.; Tibshirani, R. Monographs on Statistics and Applied Probability 57, An Introdaction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1993; ISBN 0-412-04231-2. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; SAGE Publications Ltd.: Fair Lawn, NJ, USA, 2013; ISBN 978-9351500827. [Google Scholar]
- Albers, C.; Lakens, D. When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. J. Exp. Soc. Psychol. 2018, 74, 187–195. [Google Scholar] [CrossRef][Green Version]
- R Core Team. R 3.53 Statistical Software 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria. Available online: https://www.R-project.org (accessed on 14 January 2020).
- Kassambara, A. Package ‘ggcorrplot’. R package version 0.1.3. Visualization of a Correlation Matrix Using “ggplot2”. Available online: https://CRAN.R-project.org/package=ggcorrplot (accessed on 19 May 2019).
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2019, 1–25. [Google Scholar] [CrossRef]
- The Jamovi Project Jamovi 1.1.7. 2019. Available online: https://www.jamovi.org (accessed on 9 January 2020).
- Kolozsvári, I.; Molnár, J.; Dévai, G. Recent river channel change detections in the section of the River Tisza above Tiszaújlak (Bилок). Landsc. Environ. 2016, 10, 123–130. [Google Scholar] [CrossRef]
- Kiss, T.; Nagy, Z.; Balogh, M. Floodplain level development induced by human activity-case study in the lower maros/mures river, Romania and Hungary. Carpathian J. Earth Environ. Sci. 2017, 12, 83–93. [Google Scholar]
- Zhao, Y.; Marriott, S.B. Dispersion and remobilisation of heavy metals in the River Severn System, UK. Procedia Environ. Sci. 2013, 18, 167–173. [Google Scholar] [CrossRef][Green Version]
- Nanson, G.C. Point bar and floodplain formation of the meandering Beatton River, northeastern British Columbia, Canada. Sedimentology 1980, 27, 3–29. [Google Scholar] [CrossRef]
- Vantelon, D.; Pelletier, M.; Michot, L.J.; Barres, O.; Thomas, F. Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH- bending region. Clay Miner. 2001, 36, 369–379. [Google Scholar] [CrossRef]
- Pinay, G.; Black, V.J.; Planty-Tabacchi, A.M.; Gumiero, B.; Décamps, H. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 2000, 50, 163–182. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Qin, S.; Yang, G.; Fang, K.; Zhu, B.; Kuzyakov, Y.; Chen, P.; Xu, Y.; Yang, Y. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef][Green Version]
- Giannetta, B.; Zaccone, C.; Plaza, C.; Siebecker, M.G.; Rovira, P.; Vischetti, C.; Sparks, D.L. The role of Fe(III) in soil organic matter stabilization in two size fractions having opposite features. Sci. Total Environ. 2019, 653, 667–674. [Google Scholar] [CrossRef]
- Borůvka, L.; Drábek, O. Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant. Soil Environ. 2004, 50, 339–345. [Google Scholar] [CrossRef][Green Version]
- Kiss, T.; Nagy, J.; Fehérváry, I.; Vaszkó, C. (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Sci. Total Environ. 2019, 686, 931–945. [Google Scholar] [CrossRef]
- Alapi, K.; Győri, Z. Investigations on mud on heavy metal contaminated flood-plain of Tisza. Acta Agraric. Debr. 2003, 3, 96–101. [Google Scholar] [CrossRef]
Forms | Sand (%) | Silt (%) | Clay (%) | Organic Matter (%) | pH [H2O] | pH [KCl] | |
---|---|---|---|---|---|---|---|
Point bar | Mean | 17.56 | 49.05 | 33.39 | 4.24 | 6.77 | 5.95 |
Standard deviation | 7.93 | 4.70 | 5.57 | 1.04 | 0.58 | 0.77 | |
Swale | Mean | 10.56 | 52.55 | 36.89 | 4.90 | 7.04 | 6.40 |
Standard deviation | 2.18 | 1.88 | 3.18 | 1.33 | 0.32 | 0.42 |
Heavy Metals | Test | t | df | p | Mean Diff. (mg/kg) | ξ |
---|---|---|---|---|---|---|
Al | Yuen’s test | 1.69 | 35.9 | 0.101 | -3031.88 | 0.430 |
Yuen’s bootstrapped | −1.62 | - | 0.120 | - | - | |
Ca | Yuen’s test | 1.87 | 35.0 | 0.070 | −1435.94 | 0.433 |
Yuen’s bootstrapped | −1.78 | - | 0.077 | - | - | |
Fe | Yuen’s test | 2.16 | 32.9 | 0.038 | −4647.53 | 0.539 |
Yuen’s bootstrapped | −2.06 | - | 0.057 | - | - | |
K | Yuen’s test | 3.35 | 35.2 | 0.002 | −556.64 | 0.632 |
Yuen’s bootstrapped | −3.28 | - | <0.001 | - | - | |
Mg | Yuen’s test | 2.53 | 36.4 | 0.016 | −1025.14 | 0.565 |
Yuen’s bootstrapped | −2.42 | - | 0.013 | - | - | |
Mn | Yuen’s test | 3.26 | 37.1 | 0.002 | −256.68 | 0.603 |
Yuen’s bootstrapped | −3.17 | - | 0.002 | - | - | |
Cr | Yuen’s test | 2.39 | 36.6 | 0.022 | −2.34 | 0.452 |
Yuen’s bootstrapped | −2.29 | - | 0.023 | - | - | |
Cu | Yuen’s test | 3.93 | 37.5 | <0.001 | −4.45 | 0.704 |
Yuen’s bootstrapped | −3.79 | - | 0.002 | - | - | |
Ni | Yuen’s test | 4.27 | 32.0 | <0.001 | −3.16 | 0.791 |
Yuen’s bootstrapped | −4.06 | - | 0.002 | - | - | |
Pb | Yuen’s test | 3.05 | 38.0 | 0.004 | −4.43 | 0.549 |
Yuen’s bootstrapped | −2.95 | - | 0.003 | - | - | |
Zn | Yuen’s test | 4.51 | 25.7 | <0.001 | −19.31 | 0.815 |
Yuen’s bootstrapped | −4.25 | - | <0.001 | - | - |
Heavy Metals | Mean Square | F Value | p (Significance) | ||||||
---|---|---|---|---|---|---|---|---|---|
Layer | Form | Layer: Form | Layer | Form | Layer: Form | Layer | Form | Layer: Form | |
Al | 60,345,174 | 164,033,034 | 15,134,736 | 15.15 | 41.18 | 3.80 | <0.001 | <0.001 | 0.005 |
Ca | 8,798,030 | 44,212,057 | 2,242,957 | 4.473 | 22.476 | 1.140 | 0.001 | <0.001 | 0.338 |
Fe | 102,014,865 | 267,920,804 | 86,580,483 | 9.558 | 25.101 | 8.112 | <0.001 | <0.001 | <0.001 |
K | 646,924 | 4,338,481 | 466,156 | 7.507 | 50.342 | 5.409 | <0.001 | <0.001 | <0.001 |
Mg | 1,651,569 | 33,482,505 | 1,858,403 | 4.637 | 93.997 | 5.217 | 0.001 | <0.001 | <0.001 |
Mn | 129,790 | 578,617 | 116,851 | 2.842 | 12.669 | 2.559 | 0.024 | <0.001 | 0.039 |
Cr | 285.8 | 1443.5 | 162.8 | 7.915 | 39.981 | 4.510 | 0.001 | <0.001 | 0.001 |
Cu | 1582 | 3953 | 12 | 61.105 | 152.639 | 0.475 | <0.001 | <0.001 | 0.754 |
Ni | 24.3 | 1073.8 | 55.3 | 1.849 | 81.739 | 4.209 | 0.119 | <0.001 | 0.002 |
Pb | 225 | 4743 | 201 | 3.913 | 82.395 | 3.491 | 0.004 | <0.001 | 0.008 |
Zn | 15774 | 57966 | 1181 | 49.079 | 180.357 | 3.674 | <0.001 | <0.001 | 0.006 |
Source | SS | df | F | p | ω2 |
---|---|---|---|---|---|
Model | 12.539 | 4 | 3.665 | 0.010 | 0.143 |
Fluvial form | 0.443 | 1 | 0.518 | 0.474 | −0.006 |
Clay | 0.737 | 1 | 0.862 | 0.357 | −0.002 |
Distance from river | 2.466 | 1 | 2.883 | 0.095 | 0.025 |
Organic matter | 5.265 | 1 | 6.155 | 0.016 | 0.069 |
Residuals | 50.461 | 59 | - | - | - |
Total | 63.000 | 63 | - | - | - |
Source | SS | df | F | p | ω2 |
---|---|---|---|---|---|
Model | 22.160 | 4 | 8.004 | <0.001 | 0.304 |
Fluvial form | 3.778 | 1 | 5.458 | 0.023 | 0.048 |
Clay | 9.678 | 1 | 13.981 | <0 .001 | 0.141 |
Distance from river | 0.988 | 1 | 1.427 | 0.237 | 0.005 |
Organic matter | 0.526 | 1 | 0.761 | 0.387 | −0.003 |
Residuals | 40.840 | 59 | - | - | - |
Total | 63.000 | 63 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, Z.; Buró, B.; Szabó, J.; Tóth, C.A.; Baranyai, E.; Herman, P.; Prokisch, J.; Tomor, T.; Szabó, S. Geomorphology as a Driver of Heavy Metal Accumulation Patterns in a Floodplain. Water 2020, 12, 563. https://doi.org/10.3390/w12020563
Szabó Z, Buró B, Szabó J, Tóth CA, Baranyai E, Herman P, Prokisch J, Tomor T, Szabó S. Geomorphology as a Driver of Heavy Metal Accumulation Patterns in a Floodplain. Water. 2020; 12(2):563. https://doi.org/10.3390/w12020563
Chicago/Turabian StyleSzabó, Zsuzsanna, Botond Buró, József Szabó, Csaba Albert Tóth, Edina Baranyai, Petra Herman, József Prokisch, Tamás Tomor, and Szilárd Szabó. 2020. "Geomorphology as a Driver of Heavy Metal Accumulation Patterns in a Floodplain" Water 12, no. 2: 563. https://doi.org/10.3390/w12020563