Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany
Abstract
:1. Introduction
2. Materials and Methods
- The determination of the actual N input into groundwater and surface waters;
- The identification of actual “hot spot” areas of N pollution;
- The assessment of the necessary reduction of N emissions to reach the EU quality standards;
- The prediction of the time lags until N reduction measures will show effect (target achievement).
- CNO3: nitrate concentration in the leachate (mg/L);
- Qsw: leachate rate (mm/year);
- KKA: N emissions from small sewage treatment plants (kg N/(KKA and year));
- KS: N emissions from urban systems (kg N/(community and year));
- Nsoil: diffuse N output from soils (kg N/(ha and year));
- 4.43: factor to convert nitrate-N (mg/L) to nitrate-NO3 (mg/L)(-);
- 0.01: factor to convert mm in liter (-).
- Nsoil (agri): N output from soil originating from agriculture (kg N/ha·year);
- Nsoil (NOx): N output from soil originating from NOx (kg N/ha·year);
- NU: mean agricultural N balance surplus (kg N/ha·year);
- NHx: mean atmospheric NHx deposition (kg N/ha·year);
- NI: mean N immobilization in soil (kg N/ha·year);
- ND: mean denitrification in soil (kg N/ha·year).
- Nstsoil: N output from soil from agricultural N sources and NOx deposition after residence time (tsoil) (kg N/(ha∙year));
- tsoil: residence times in soil (year);
- Dmax: maximum yearly denitrification rate in soil (kg N/(ha∙year));
- k: Michaelis-constant (kg N/(ha∙year));
- 0: displaceable N surplus in soils (kg N/(ha∙year)).
3. Results
3.1. Nitrogen Emissions from Agricultural Sources and Resulting Nitrate Concentrations in the Leachate
3.1.1. Agricultural N Sources
3.1.2. N Output from Soils Originating from Agricultural N Emission Sources
3.1.3. Nitrate Concentration in the Leachate Originating from Agricultural Sources
3.2. Nitrogen Emissions from Non-Agricultural Sources and Resulting Nitrate Concentrations in the Leachate
3.2.1. Non-Agricultural N Sources
3.2.2. Nitrate Concentration in the Leachate Originating from Non-Agricultural N Sources
3.3. Plausibility Check of Modelled Nitrate Concentration in the Leachate
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Strebel, O.; Duynisveld, W.H.M.; Böttcher, J. Nitrate pollution of groundwater in Western Europe. Agric. Ecosyst. Environ. 1989, 26, 189–214. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011; p. 612. [Google Scholar]
- Power, J.F.; Schepers, J.S. Nitrate contamination of groundwater in North America. Agric. Ecosyst. Environ. 1989, 26, 165–187. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Liptzin, D.; Dzurella, K.; Fryjoff-Hung, A.; Hollander, A.; Jensen, V.; King, A.; Kourakos, G.; McNally, A.; Stuart Pettygrove, G.; et al. Agriculture’s contribution to nitrate contamination of Californian groundwater (1945–2005). J. Environ. Qual. 2014, 43, 895–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorburn, P.J.; Biggs, J.S.; Weier, K.L.; Keating, B.A. Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agric. Ecosyst. Environ. 2003, 94, 49–58. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.F.; Liu, J.; Wu, J.C.; Zheng, C.M. Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China plain. J. Contam. Hydrol. 2015, 179, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Haller, L.; McCarthy, P.; O’Brien, T.; Riehle, J.; Stuhldreher, T. Nitrate Pollution of Groundwater; Alpha Water Systems Inc.: Paramount, CA, USA, 2013; Available online: http://www.reopure.com/nitratinfo.html (accessed on 10 July 2019).
- Bechmann, M.; Blicher-Mathiesen, G.; Kyllmar, K.; Iital, A.; Lagzdins, A.; Salo, T. Nitrogen application, balances and the effect on nitrogen concentrations in runoff from small catchments in the Nordic-Baltic countries. Agric. Ecosyst. Environ. 2014, 198, 104–113. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J.; Lassaletta, L. The nitrogen cascade from agricultural soils to the sea: Modeling nitrogen transfers at regional watershed and global scales. Philos. Trans. R. Soc. B 2013, 368, 1–13. [Google Scholar] [CrossRef]
- EU-WFD. Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, L 327, 1–73. [Google Scholar]
- EU-MSFD. Directive 2008/56/EC of the European Parliament and the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy. Off. J. Eur. Communities 2008, L 164/19, 1–40. [Google Scholar]
- European Parliament and Council of the European Union. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Off. J. Eur. Communities 1991, L 375/1, 1–8. [Google Scholar]
- Müller, D.; Blum, A.; Hart, A.; Hookey, J.; Kunkel, R.; Scheidleder, A.; Tomlin, F.; Wendland, F. Final Report for a Methodology to Set Up Groundwater Threshold Values in Europe; Report D18; Specific Targeted EU—Research Project Bridge: Vienna, Austria, 2006; pp. 1–63. [Google Scholar]
- European Commission. Guidance on Groundwater Status and Trend Assessments, CIS Guidance Document No. 18, Luxembourg: Office for Official Publications of the European Communities; European Commission: Brussels, Belgium, 2009; p. 84. [Google Scholar]
- Bikšel, J.; Retikel, I. An approach to delineate groundwater bodies at risk: Seawater intrusion in Liepāja (Latvia). E3S Web Conf. 2018, 54. [Google Scholar] [CrossRef] [Green Version]
- Garrido, T.; Iglesias, M.; Fraile, J.; Munne, A. Chemical status assessment of groundwater bodies and measures proposed within the framework of the Catalan River basin district management plan. In Proceedings of the European Groundwater Conference, Madrid, Spain, 20–21 May 2010. [Google Scholar]
- LAWA. Fachliche Umsetzung der Richtlinie zum Schutz des Grundwassers vor Verschmutzung und Verschlechterung 2006/118/EG; Sachstandsbericht vom 31.01.2008; LAWA-Unterausschuss, Fachliche Umsetzung der Grundwassertochterrichtlinie: Berlin, Germany, 2008. [Google Scholar]
- Kuhr, P.; Haider, J.; Kreins, P.; Kunkel, R.; Tetzlaff, B.; Vereecken, H.; Wendland, F. Model based assessment of nitrate pollution of water resources on a federal state level for the dimensioning of agro-environmental reduction strategies: The North Rhine-Westphalia (Germany) case study. Water Resour. Manag. 2013, 27, 885–909. [Google Scholar] [CrossRef]
- Wendland, F.; Bogena, H.; Goemann, H.; Hake, J.F.; Kreins, P.; Kunkel, R. Impact of nitrogen reduction measures on the nitrogen loads of the river Ems and Rhine (Germany). Phys. Chem. Earth 2009, 30, 527–541. [Google Scholar] [CrossRef]
- van Berk, W.; Fu, Y. Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: Risks for groundwater resources. Environ. Sci. Technol. 2017, 51, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Højberg, A.L.; Lausten Hansen, A.; Wachniew, P.; Żurek, A.J.; Virtanen, S.; Arustiene, J.; Strömqvist, J.; Rankinen, K.; Refsgaard, J.C. Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. J. Hydrol. Reg. Stud. 2017, 12, 50–68. [Google Scholar] [CrossRef]
- Kolbe, T.; de Dreuzy, J.R.; Abbott, B.W.; Aquilina, L.; Babey, T.; Green, C.T.; Fleckenstein, J.H.; Labasque, T.; Laverman, A.M.; Marçais, J.; et al. Stratification of reactivity determines nitrate removal in groundwater. Proc. Natl. Acad. Sci. USA 2019, 116, 2494–2499. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, R.; Bach, M.; Behrendt, H.; Wendland, F. Groundwater-borne nitrate intakes into surface waters in Germany. Water Sci. Technol. 2004, 49, 11–19. [Google Scholar] [CrossRef]
- Kunkel, R.; Wendland, F.; Albert, H. Zum Nitratabbau in den grundwasserführenden Gesteinsschichten des Elbeeinzugsgebietes. Wasser Boden 1999, 51, 16–19. [Google Scholar]
- Cremer, N.; Schindler, R.; Greven, K. Nitrateintrag ins Grundwasser und Abbaumechanismen an verschiedenen Fallbeispielen. Korresp. Wasserwirtsch. 2018, 11–16, 352–360. [Google Scholar]
- Rohmann, U.; Sontheimer, H. Nitrat im Grundwasser: Ursachen, Bedeutung, Lösungswege; DVGW-Forschungsstelle am Engler-Bunte-Institut der Universität Karlsruhe: Karlsruhe, Germany, 1985; p. 468. [Google Scholar]
- LAWA. Empfehlungen für eine harmonisierte Vorgehensweise zum Nährstoffmanagement (Defizitanalyse, Nährstoffbilanzen, Wirksamkeit landwirtschaftlicher Maßnahmen) in Flussgebietseinheiten. Produktdatenblätter 2017, 35–37, 42. [Google Scholar]
- Fraters, D.; van Leeuwen, T.; Boumans, L.; Reijs, J. Use of long-term monitoring data to derive a relationship between nitrogen surplus and nitrate leaching for grassland and arable land on well-drained sandy soils in the Netherlands. Acta Agric. Scand. B Soil Plant 2005, 65, 144–154. [Google Scholar] [CrossRef]
- Dalgaard, T.; Hansen, B.; Hasler, B.; Hertel, O.; Hutchings, N.J.; Jacobsen, B.H.; Stoumann Jensen, L.; Kronvang, B.; Olesen, J.E.; Schjørring, J.K.; et al. Policies for agricultural nitrogen management—Trends, challenges and prospects for improved efficiency in Denmark. Environ. Res. Lett. 2014, 9, 115002. [Google Scholar] [CrossRef]
- Wendland, F.; Behrendt, H.; Gömann, H.; Hirt, U.; Kreins, P.; Kuhn, U.; Kunkel, R.; Tetzlaff, B. Determination of nitrogen reduction levels necessary to reach groundwater quality targets in large river basins: The Weser basin case study. Nutr. Cycl. Agroecosyst. 2009, 85, 63–78. [Google Scholar] [CrossRef]
- Hirt, U.; Kreins, P.; Kuhn, U.; Mahnkopf, J.; Venohr, M.; Wendland, F. Management options to reduce future nitrogen emissions into rivers: A case study of the Weser river basin, Germany. Agric. Water Manag. 2012, 115, 118–131. [Google Scholar] [CrossRef]
- Andelov, M.; Kunkel, R.; Uhan, J.; Wendland, F. Determination of nitrogen re-duction levels necessary to reach groundwater quality targets in Slovenia. Int. J. Environ. Sci. 2014, 29, 1806–1818. [Google Scholar]
- Kunkel, R.; Herrmann, F.; Kape, H.E.; Keller, L.; Koch, F.; Tetzlaff, B.; Wendland, F. Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpommern and scenario analyses how to reach N-quality targets for groundwater and the coastal waters. Environ. Earth Sci. 2017, 76, 146. [Google Scholar] [CrossRef]
- Wendland, F.; Kunkel, R.; Gömann, H.; Kreins, P. Water fluxes and diffuse nitrate pollution at the river basin scale: Interfaces for the coupling of agroeconomical models with hydrological approaches. Water Sci. Technol. 2007, 55, 133–142. [Google Scholar] [CrossRef]
- Wakidaa, F.T.; Lerner, D.N. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res. 2005, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, J.; Liu, J.; Huang, G.; Lu, C.; Zhang, Y. Driving mechanism and sources of groundwater nitratecontamination in the rapidly urbanized region of south China. J. Contam. Hydrol. 2015, 182, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia. Available online: https://de.wikipedia.org/wiki/Metropolregion_Rhein-Ruhr (accessed on 20 November 2019).
- Henrichsmeyer, W.; Cypris, C.; Löhe, W.; Meudt, M.; Sander, R.; von Sothen, F.; Isermeyer, F.; Schefski, A.; Schleef, K.-H.; Neander, E.; et al. Entwicklung Eines Gesamtdeutschen Agrarsektormodells RAUMIS96. Endbericht zum Kooperationsprojekt; Forschungsbericht für das BML (94 HS 021); Vervielfältigtes Manuskript: Bonn/Braunschweig, Germany, 1996. [Google Scholar]
- Kreins, P.; Gömann, H.; Herrmann, S.; Kunkel, R.; Wendland, F. Integrated agricultural and hydrological modeling within an intensive livestock region. Adv. Econ. Environ. Res. 2007, 7, 113–142. [Google Scholar]
- Heidecke, C.; Hirt, U.; Kreins, P.; Kuhr, P.; Kunkel, R.; Mahnkopf, J.; Schott, M.; Tetzlaff, B.; Venohr, M.; Wagner, A.; et al. Endbericht zum Forschungsprojekt “Entwicklung Eines Instrumentes für ein Flussgebietsweites Nährstoffmanagement in der Flussgebietseinheit Weser” AGRUM+-Weser; Thünen Report 21; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2015; 380p. [Google Scholar] [CrossRef]
- Wendland, F. Die Nitratbelastung in den Grundwasserlandschaften der “Alten” Bundesländer (BRD); Berichte aus der Ökologischen Forschung 8; Forschungszentrum Jülich Germany: Juelich, Germany, 1992; p. 150. [Google Scholar]
- Wienhaus, S.; Höper, H.; Eisele, M.; Meesenburg, H.; Schäfer, W. Nutzung Bodenkundlich-Hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasser-Schutz—Ergebnisse Eines Modellprojektes (NOLIMP) zur Umsetzung der EG—Wasserrahmenrichtlinie; GeoBerichte 9; Landesamt für Bergbau, Energie und Geologie: Hannover, Germany, 2008; 56p. [Google Scholar]
- Herrmann, F.; Keller, L.; Kunkel, R.; Vereecken, H.; Wendland, F. Determination of spatially differentiated water balance components including groundwater recharge on the federal state level—A case study using the mGROWA model in North Rhine-Westphalia (Germany). J. Hydrol. Reg. Stud. 2015, 4, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, F.; Kunkel, R.; Ostermann, U.; Vereecken, H.; Wendland, F. Projected impact of climate change on irrigation needs and groundwater resources in the metropolitan area of Hamburg (Germany). Environ. Earth Sci. 2016, 75, 1104. [Google Scholar] [CrossRef]
- Engel, N.; Müller, U.; Schäfer, W. BOWAB—Ein Mehrschicht-Bodenwasserhaushaltsmodell. GeoBerichte 2012, 20, 85–98. [Google Scholar]
- Wendland, F.; Kunkel, R.; Grimvall, A.; Kronvang, B.; Muller-Wohlfeil, D.I. Model system for the management of nitrogen leaching at the scale of river basins and regions. Water Sci. Technol. 2001, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, R.; Wendland, F. WEKU—A GIS-supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. J. Environ. Geol. 1997, 1–2, 1–9. [Google Scholar] [CrossRef]
- Böttcher, J.; Strebel, O.; Duynisveld, W.H.M. Kinetik und Modellierung gekoppelter Stoffumsetzungen im Grundwasser eines Lockergesteinsaquifers. Geol. Jahrb. 1989, 51, 3–40. [Google Scholar]
- van Beek, C.G.E.M. Landdbouw en Drinkwatervoorziening, orientierend Onderzoek Naar de Beinvloeding can de Grondwaterkwaliteit Door Bemesting en Het Gebruik van Bestrijdings-Middelen; Keuringsinstituut Voor Waterleidingsartikelen Kiwa NV: Nieuwegein, The Netherlands, 1987. [Google Scholar]
- Walther, W.; Reinstorf, F.; Pätsch, M.; Weller, D. Management tools to minimize nitrogen emissions into groundwater in agricultural used catchment areas, northern low plain of Germany. In Proceedings of the XXX IAHR Congress—Water Engineering and Research in a Learning Society, Thessaloniki, Greece, 24–29 August 2003; pp. 747–754. [Google Scholar]
- Venohr, M.; Hirt, U.; Hofmann, J.; Opitz, D.; Gericke, A.; Wetzig, A.; Natho, S.; Neumann, F.; Hürdler, J.; Matranga, M.; et al. Modelling of nutrient emissions in river systems—MONERIS—Methods and Background. Int. J. Hydrobiol. 2011, 96, 435–483. [Google Scholar] [CrossRef]
- Behrendt, H.; Opitz, D. Retention of nutrients in river systems: Dependence of specific runoff and hydraulic load. Hydrobiologia 2000, 410, 111–122. [Google Scholar] [CrossRef]
- OSPAR Commission. Principles of the Comprehensive Study on Riverine Inputs and Direct Discharges (RID); OSPAR Commission: Southhampton, UK, 1998; 16p. [Google Scholar]
- Schaap, M.; Hendriks, C.; Kranenburg, R.; Kuenen, J.; Segers, A.; Schlutow, A.; Nagel, H.D.; Ritter, A.; Banzhaf, S. PINETI-3: Modellierung Atmosphärischer Stoffeinträge von 2000 bis 2015 zur Bewertung der ökosystem-Spezifischen Gefährdung von Biodiversität Durch Luftschadstoffe in Deutschland; UBA-Texte 79/2018; Umweltbundesamt: Dessau, Germany, 2018; 149p. [Google Scholar]
- Kunkel, R.; Wendland, F. The GROWA98 model for Water balance analysis in large river basins—The river Elbe case study. J. Hydrol. 2002, 259, 152–162. [Google Scholar] [CrossRef]
- Schäfer, W.; Höper, H.; Müller, U. Diffuse nitrat- und phosphatbelastung—Ergebnisse der bestandsaufnahme der EUWRR in Niedersachsen. Geoberichte 2007, 2, 3–32. [Google Scholar]
- Schaap, M.; Banzhaf, S.; Scheuschner, T.; Geupel, M.; Hendriks, C.; Kranenburg, R.; Nagel, H.-D.; Segers, A.; von Schlutow, A.; Wichink, R.; et al. Atmospheric nitrogen deposition to terrestrial ecosystems across Germany. Biogeosciences 2017. [Google Scholar] [CrossRef]
- MKULNV. Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen; Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz Nordrhein-Westfalen: Düsseldorf, Germany, 2014; Available online: https://www.umwelt.nrw.de/fileadmin/redaktion/Broschueren/abwasserbeseitigung_entwicklung_kurzfassung.pdf (accessed on 28 November 2019).
- DEA-Datendrehscheibe. 2016. Available online: https://www.elwasweb.nrw.de/elwas-web/index.jsf# (accessed on 17 July 2018).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendland, F.; Bergmann, S.; Eisele, M.; Gömann, H.; Herrmann, F.; Kreins, P.; Kunkel, R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water 2020, 12, 550. https://doi.org/10.3390/w12020550
Wendland F, Bergmann S, Eisele M, Gömann H, Herrmann F, Kreins P, Kunkel R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water. 2020; 12(2):550. https://doi.org/10.3390/w12020550
Chicago/Turabian StyleWendland, Frank, Sabine Bergmann, Michael Eisele, Horst Gömann, Frank Herrmann, Peter Kreins, and Ralf Kunkel. 2020. "Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany" Water 12, no. 2: 550. https://doi.org/10.3390/w12020550
APA StyleWendland, F., Bergmann, S., Eisele, M., Gömann, H., Herrmann, F., Kreins, P., & Kunkel, R. (2020). Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water, 12(2), 550. https://doi.org/10.3390/w12020550