Flood Consequences of Land-Use Changes at a Ski Resort: Overcoming a Geomorphological Threshold (Portainé, Eastern Pyrenees, Iberian Peninsula)
Abstract
:1. Introduction
1.1. The Geomorphological Threshold Concept
1.2. Study Area
1.3. Data Constraints
1.4. The 2006 and 2008 Trigger Events
2. Methodology
3. Intrinsic Control Factors: Lithology and Geomorphology
3.1. Lithological Characterisation
3.2. Geomorphological Characterisation
3.2.1. Evolution of the Area and Present Features
3.2.2. The Basin’s Propensity to Torrential Dynamics
3.2.3. Former Evidence of Geomorphological Disequilibrium
4. Land-Use Changes
4.1. General Forest Regeneration: Vegetation Changes in the Lower Part of the Basin
4.2. Land-Use Changes in the Headwaters
5. Analysis of Rainfall and Hydrological Response
5.1. Analysis of Rainfall Behaviour
5.1.1. Trend Analysis of Historic Rainfall Time Series
5.1.2. Elaboration of Synthetic Hyetographs
5.1.3. Other systematic and non-systematic knowledge on precipitation
5.2. Changes in the Hydrological Behaviour of the Basin’s Headwaters
6. The Present Hydrogeomorphic Effects
6.1. The Processes in the Headwaters
6.2. Hydrogeomorphological Processes along the Main Channels
6.3. Record of Changes in the Torrential Dynamic in the Downstream Stretch
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goudie, A. IAG Glossary Of Geomorphology (version 1.0). International Association of Geomorphologists, 2014. Available online: http://www.geomorph.org/wp-content/uploads/2015/06/GLOSSARY_OF_GEOMORPHOLOGY1.pdf (accessed on 14 February 2018).
- Schumm, S.A. Geomorphic thresholds and complex response of drainage systems. In Fluvial Geomorphology; Morisawa, M., Ed.; State University of New York: Binghamton, NY, USA, 1973; Volume 13, pp. 299–310. [Google Scholar]
- Schumm, S.A. Geomorphic Thresholds: The Concept and Its Applications. Trans. Inst. Br. Geogr. 1979, 4, 485–515. [Google Scholar] [CrossRef]
- Brunsden, D.; Thornes, J.B. Landscape Sensitivity and Change. Trans. Inst. Br. Geogr. 1979, 4, 463–484. [Google Scholar] [CrossRef] [Green Version]
- Coates, D.R.; Vitek, J.D. Thresholds in Geomorphology; Allen & Unwin Pty: Sydney, Australia, 1980. [Google Scholar]
- Nanson, G.C.; Huang, Q. A philosophy of rivers: Equilibrium states, channel evolution, teleomatic change and least action principle. Geomorphology 2018, 302, 3–19. [Google Scholar] [CrossRef]
- Gregory, K.J. The Earth’s Land Surface: Landforms and Processes in Geomorphology; Sage Publications: London, UK, 2010. [Google Scholar]
- Wohl, E.E. Rivers in the Landscape.; Wiley Blackwell: Chichester, West Sussex, UK, 2014. [Google Scholar]
- Dust, D.W.; Wohl, E.E. Quantitative technique for assessing the geomorphic thresholds for floodplain instability and braiding in the semi-arid environment. Nat. Hazards 2010, 55, 145–160. [Google Scholar] [CrossRef]
- Watson, C.C.; Biedenharn, D.S.; Thorne, C.R. Stream Rehabilitation; Cottonwood Research LLC: Fort Collins, CO, USA, 2005. [Google Scholar]
- Wilshire, H.G. Human causes of accelerated wind erosion in California’s deserts. In Thresholds in Geomorphology. Binghamton Symposium; George Allen & Unwin: London, UK, 1980; Volume 9, pp. 415–433. [Google Scholar]
- ICGC. Estudi de la torrentada de la nit del dia 11 al 12 de setembre de 2008 al barranc de Portainé (Pallars Sobirà); AP-046/10; Generalitat de Catalunya: Barcelona, Spain, 2010. [Google Scholar]
- ICGC. Nota de la visita al barranc de Portainé (Pallars Sobirà) arran del episodi de pluges dels dies 22 i 23 de juliol de 2010, AP-046/10; Generalitat de Catalunya: Barcelona, Spain, 2010. [Google Scholar]
- Victoriano, A.; Díez-Herrero, A.; Génova, M.; Guinau, M.; Furdada, G.; Khazaradze, G.; Calvet, J. Four-topic correlation between flood dendrogeomorphological evidence and hydraulic parameters (the Portainé stream, Iberian Peninsula). Catena 2018, 162, 216–229. [Google Scholar] [CrossRef]
- Abancó, C.; Hürlimann, M. Estimate of the debris-flow entrainment using field and topographical data. Nat. Hazards 2014, 71, 363–383. [Google Scholar] [CrossRef]
- De las Heras, Á. Modificación de la respuesta hidrológica en avenidas torrenciales ante los cambios de usos del suelo en una cuenca de montaña (Portainé, Pirineo leridano); Universidad Politécnica de Madrid: Madrid, Spain, 2016. [Google Scholar]
- Ortuño, M.; Guinau, M.; Calvet, J.; Furdada, G.; Bordonau, J.; Ruiz, A.; Camafort, M. Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees. Geomorphology 2017, 295, 364–382. [Google Scholar] [CrossRef]
- Palau, R.M.; Hürlimann, M.; Pinyol, J.; Moya, J.; Victoriano, A.; Génova, M.; Puig-Polo, C. Recent debris flows in the Portainé catchment (Eastern Pyrenees, Spain): Analysis of monitoring and field data focussing on the 2015 event. Landslides 2017, 14, 1161–1170. [Google Scholar] [CrossRef] [Green Version]
- Pinyol, J.; Hürlimann, M.; Furdada, G.; Moysset, M.; Palau, R.M.; Victoriano, A.; González, M.; Moya, J.; Raïmat, C.; Fañanás, C. El barranco de Portainé (Pirineo Central): Un laboratorio in situ completo para el estudio de la actividad torrencial. In IX Simposio Nacional sobre Taludes y Laderas Inestables; Centre Internacional de Màtodes Numèrics en Enginyeria (CIMNE): Barcelona, Spain, 2017; Volume 2013, pp. 1165–1176. [Google Scholar]
- Furdada, G.; Guinau, M.; Subiela, G.B.; Moraru, A. Las cuencas de Portainé y Romadriu: Susceptibilidad al cambio y factores de control antrópicos y naturales. In Geomorfología del Antropoceno. Efectos del cambio Global sobre los procesos geomorfológicos; García, G., Gómez-Pujol, L., Morán-Tejada, E., y Batalla, R., Eds.; Sociedad Española de Geomorfología: Palma, Spain, 2018; pp. 335–338. [Google Scholar]
- Génova, M.; Díez-Herrero, A.; Furdada, G.; Guinau, M.; Victoriano, A. Dendrogeomorphological Evidence of Flood Frequency Changes and Human Activities (Portainé Basin, Spanish Pyrenees). Tree-Ring Res. 2018, 74, 144–161. [Google Scholar] [CrossRef]
- Victoriano, A.; Brasington, J.; Guinau, M.; Furdada, G.; Cabré, M.; Moysset, M. Geomorphic impact and assessment of flexible barriers using multi-temporal LiDAR data: The Portainé mountain catchment (Pyrenees). Eng. Geol. 2018, 237, 168–180. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H. Tools in fluvial Geomorphology.; Ohn Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- Carreras, J. Flora i vegetació de Sant Joan de l’Erm i de la Vall de Santa Magdalena (Pirineus catalans); Col.lecció estudis; Institut d’ Estudis Ilerdencs: Lleida, Spain, 1993; Volume 3, pp. 1–321. [Google Scholar]
- Meteocat. Atles Climátic de Catalunya 1961–1990; Servei Meteorològic de Catalunya: Barcelona, Spain, 2008. [Google Scholar]
- Muñoz, J.A. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In Thrust Tectonics; McClay, K.R., Ed.; Springer: Dordrecht, The Netherlands, 1992; pp. 235–246. [Google Scholar]
- Padel, M. Influence cadomienne dans les séries pré-sardes des Pyrénées Orientales: Approche géochimique, stratigraphique et géochronologique; Université de Lille 1: Lille, France, 2016; Available online: http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/38ae32e6-694a-470e-b34e-1b6938f8f6e8 (accessed on 28 January 2020).
- Hartevelt, J.J.A. Geology of the upper Segre and Valira Valleys, Central Pyrenees, Andorra/Spain. Leidse Geol. Meded. 1970, 45, 167–236. [Google Scholar]
- Laumonier, B.; Autran, A.; Barbey, P.; Cheilletz, A.; Baudin, T.; Cocherie, A.; Guerrot, C. Conséquences de l’absence de socle cadomien sur l’âge et la signification des séries pré-varisques (anté-Ordovicien supérieur) du sud de la France (Pyrénées, Montagne Noire). Bull. la Société Géologique Fr. 2004, 175, 643–655. [Google Scholar] [CrossRef]
- Monod, B.; Regard, V.; Carcone, J.; Wyns, R.; Christophoul, F. Postorogenic planar palaeosurfaces of the central Pyrenees: Weathering and neotectonic records. Comptes Rendus Geosci. 2016, 348, 184–193. [Google Scholar] [CrossRef]
- Ortuño, M.; Martí, A.; Martín-Closas, C.; Jiménez-Moreno, G.; Martinetto, E.; Santanach, P. Palaeoenvironments of the Late Miocene Prüedo Basin: implications for the uplift of the Central Pyrenees. J. Geol. Soc. 2013, 170, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Barrón, E.; Postigo-Mijarra, J.M.; Casas-Gallego, M. Late Miocene vegetation and climate of the La Cerdanya Basin (eastern Pyrenees, Spain). Rev. Palaeobot. Palynol. 2016, 235, 99–119. [Google Scholar] [CrossRef]
- Fernandes, M.; Oliva, M.; Palma, P.; Ruiz-Fernández, J.; Lopes, L. Glacial stages and post-glacial environmental evolution in the Upper Garonne valley, Central Pyrenees. Sci. Total. Environ. 2017, 584, 1282–1299. [Google Scholar] [CrossRef]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef] [Green Version]
- González, M.; Pinyol, J.; Camafort, M.; Vilaplana, J.; Oller, P. El mapa para la prevención de riesgos geológicos de cataluña 1:25 000: aplicación de una metodología a escala regional para la evaluación de la susceptibilidad a generar flujos torrenciales. In VIII Simposio sobre Taludes y Laderas Inestables; Alonso, E., Corominas, J., Hürlimann, M., Eds.; Centre Internacional de Màtodes Numèrics en Enginyeria (CIMNE): Barcelona, Spain, 2013; pp. 614–623. [Google Scholar]
- Bosch i Pont, J.M. Evolució dels nuclis de població petits del Pallars Sobirà: Del 1850 a inicis del segle XXI. Ph.D. Thesis, Dpt. Geografia. Universitat de Barcelona, Barcelona, Spain, 2017. Available online: http://cataleg.ub.edu/record=b2244515~S1*cat (accessed on 26 June 2019).
- Instituto Nacional de Estadística. Alteraciones de los municipios en los Censos de Población desde 1842; Instituto Nacional de Estadística: Madrid, Spain, 2017; Available online: http://www.ine.es/intercensal/intercensal.do;jsessionid=14519F30BBA8257D11FF7EC9C3627D4C.intercensal02?search=1&cmbTipoBusq=0&textoMunicipio=rialp&btnBuscarDenom=Consultar+selecci%F3n (accessed on 26 March 2018)Last revision 14 February 2017.
- Walega, A.; Młyński, D.; Bogdał, A.; Kowalik, T. Analysis of the Course and Frequency of High Water Stages in Selected Catchments of the Upper Vistula Basin in the South of Poland. Water 2016, 8, 394. [Google Scholar] [CrossRef]
- Arias, J.S. Máximas lluvias diarias en España Peninsular; Serie monografías; Ministerio de Fomento, Dirección General de Carreteras: Madrid, Spain, 1999; p. 54. [Google Scholar]
- de Salas, L.; Carrero, L. MAXIN: Gis application to estimate Rainfall Intensity-Duration-Frequency laws in the Spanish peninsular área. In Proceedings of the 8th European Conference on Applications of Meteorology, Madrid, Spain, 13–17 September 2007. [Google Scholar]
- De Salas, L.; Fernandez, J.A. “In-site” regionalization to estimate an intensity-duration-frequency law: a solution to scarce spatial data in Spain. Hydrol. Process. 2007, 21, 3507–3513. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Lorente, J. Numerical modelling of heavy precipitation events over Eastern Pyrenees: Analysis of orographic effects. Atmospheric Res. 2013, 123, 368–383. [Google Scholar] [CrossRef]
- NRCS (Natural Resources Conservation Service). National Engineering Handbook. Part 630: Hydrology, chapter 9: Hydrologic soil-cover complexes; US Dept. of Agriculture: Washington, DC, USA, 2004.
- NRCS (Natural Resources Conservation Service). National Engineering Handbook. Part 630: Hydrology, chapter 7: Hydrologic soil groups; US Dept. of Agriculture: Washington, DC, USA, 2007.
- Te Chow, V.; Maidment, D.R.; Mays, L.W. Manual Hidrología Aplicada; McGraw-Hill: Bogotá, Colombia, 1994. [Google Scholar]
- Fidelus-Orzechowska, J.; Wrońska-Wałach, D.; Cebulski, J.; Żelazny, M. Effect of the construction of ski runs on changes in relief in a mountain catchment (Inner Carpathians, Southern Poland). Sci. Total. Environ. 2018, 630, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Ristić, R.; Kasanin-Grubin, M.; Radic, B.; Nikić, Z.; Vasiljevic, N. Land Degradation at the Stara Planina Ski Resort. Environ. Manag. 2012, 49, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Wrońska-Wałach, D.; Cebulski, J.; Fidelus-Orzechowska, J.; Żelazny, M.; Piątek, D. Impact of ski run construction on atypical channel head development. Sci. Total. Environ. 2019, 692, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol. Process. 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Bovis, M.J.; Jakob, M. The role of debris supply conditions in predicting debris flow activity. Earth Surf. Process. Landforms 1999, 24, 1039–1054. [Google Scholar] [CrossRef]
- Dearing, J. Landscape change and resilience theory: a palaeoenvironmental assessment from Yunnan, SW China. Holocene 2008, 18, 117–127. [Google Scholar] [CrossRef]
- Corella, J.P.; Benito, G.; Rodriguez-Lloveras, X.; Brauer, A.; Valero-Garcés, B. Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quat. Sci. Rev. 2014, 93, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Ceola, S.; Botter, G.; Bertuzzo, E.; Porporato, A.; Rodriguez-Iturbe, I.; Rinaldo, A. Comparative study of ecohydrological streamflow probability distributions. Water Resour. Res. 2010, 46, W09502. [Google Scholar] [CrossRef] [Green Version]
- Bodoque, J.M.; Diez-Herrero, A.; Eguibar, M.; Benito, G.; Ruiz-Villanueva, V.; Ballesteros-Cánovas, J. Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds – A review. J. Hydrol. 2015, 529, 449–467. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A.F. Land Use Change Impact on Flooding Areas: The Case Study of Cervaro Basin (Italy). Sustain. 2016, 8, 996. [Google Scholar] [CrossRef] [Green Version]
- Cunill, R.; Soriano, J.M.; Bal, M.C.; Pèlachs, A.; Rodriguez, J.M.; Pérez-Obiol, R.; Artigas, R.C. Holocene high-altitude vegetation dynamics in the Pyrenees: A pedoanthracology contribution to an interdisciplinary approach. Quat. Int. 2013, 289, 60–70. [Google Scholar] [CrossRef]
- Lebourg, T.; Zerathe, S.; Fabre, R.; Giuliano, J.; Vidal, M. A Late Holocene deep-seated landslide in the northern French Pyrenees. Geomorphol. 2014, 208, 1–10. [Google Scholar] [CrossRef]
- Abrantes, F.; Rodrigues, T.; Rufino, M.; Salgueiro, E.; Oliveira, D.; Gomes, S.; Oliveira, P.; Costa, A.; Mil-Homens, M.; Drago, T.; et al. The climate of the Common Era off the Iberian Peninsula. Clim. Past 2017, 13, 1901–1918. [Google Scholar] [CrossRef] [Green Version]
- Llasat, M.-C.; Barriendos, M.; Barrera, A.; Rigo, T.; Barrera-Escoda, A. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. J. Hydrol. 2005, 313, 32–47. [Google Scholar] [CrossRef]
- Doblas-Miranda, E.; Alonso, R.; Arnan, X.; Bermejo, V.; Brotons, L.; Heras, J.D.L.; Estiarte, M.; Hódar, J.; Llorens, P.; Lloret, F.; et al. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Glob. Planet. Chang. 2017, 148, 42–54. [Google Scholar] [CrossRef]
- Otsu, K.; Pla, M.; Brotons, L. Estimating the Severity of Defoliation Due to Pine Processionary Moth Using a Combination of Landsat and UAV Imagery. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; Valencia, Spain, 22–27 July 2018, pp. 3979–3982. [CrossRef]
- Füssel, H.-M. Climate change, impacts and vulnerability in Europe 2016—An indicator-based report; Publications Office of the European Union: Luxembourg, 2017; p. 419. [Google Scholar]
- Pachauri, R.K.; Meyer, L.; Ypersele, J.P.V.; Brinkman, S.; Kesteren, L.V.; Leprince-Ringuet, N.; Boxmeer, F.V. Climate Change 2014 Synthesis Report The Core Writing Team Core Writing Team Technical Support Unit for the Synthesis Report. Russ. Fed. Hoesung Lee (Republic Korea) Scott. B. Power N.H. Ravindranath. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover. pdf (accessed on 28 January 2020).
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
Rain Gauge | Altitude (m a.s.l.) | Distance to the Portainé Basin (km) | Measuring Interval (yyyy) | |
---|---|---|---|---|
Start | End | |||
Portainé | 1985 | 0 | 2011 | - |
Montenartró | 1322 | 2.4 | 2010 | - |
Llagunes | 1300 | 6.3 | 2008 | - |
Sort | 679 | 6.9 | 2009 | - |
Llavorsí | 850 | 8 | 1915 | 1999 |
Salòria | 2451 | 16.2 | 2004 | - |
Capdella | 1083 | 18.8 | 1932 | 1959 |
La Seu d’Urgell | 849 | 19.22 | 1996 | - |
Event Date (day month year) | Portainé | Reguerals | Caners | No. of Total Road Obstructions | Debris Cone | |||
---|---|---|---|---|---|---|---|---|
1965 m a.s.l. | 1700 m a.s.l. | 1450 m a.s.l. | 1665 m a.s.l. | 1465 m a.s.l. | 1035 m a.s.l. | |||
May 2006 | TO | 1 | ||||||
11–12 September 2008 | TO, C | TO, C | TO | TO, C | TO | w | 5 | D |
02 November 2008 | TO | 1 | ||||||
22-23 July 2010 | TO, C | TO | 2 | E, D | ||||
12 August 2010 | TO, C | TO | 2 | E, D | ||||
05 August 2011 | PO | TO, C | w | w | 0 | D | ||
23 July 2013 | TO | TO | TO | 3 | E, D | |||
20 August 2014 | 0 | |||||||
30 August 2014 | PO | TO | 1 | |||||
21 August 2015 | PO | TO | 1 | E | ||||
29 August 2016 | PO | PO | 0 |
1st Level of Analysis: Characterisation of Causes of Change | |||
Causes | Control Factor | Study Method | Result |
Intrinsic | Lithology: Substratum | Fieldwork. Structural analysis. | Dipping of remarkable planes. Characterisation of joints and discontinuity planes. |
Geomorphology: | |||
Area evolution: landforms and deposits. | Fieldwork: Evidence collection. Geomorphological mapping and analysis. | Characterisation of main forms, deposits, soils. Recognition of erodible deposits and soils and ancient deposits. | |
Morphometry. | GIS morphometric analysis. | Basin characterisation. | |
Extrinsic | Land Use and Land Cover Changes: | ||
Regional. | Historical data analysis: population and economic activities evolution. Aerial photograph series comparison. | Forest evolution: regeneration and densification. | |
Headwaters. | Fieldwork: evidence collection and mapping. GIS aerial photograph series photointerpretation and analysis. | Land-use changes characterisation. | |
Precipitation: | |||
Regional precipitation. | Statistical trend analysis of historical rainfall series. | Regional precipitation characterisation. | |
Local, basin precipitation modelling. | Elaboration of synthetical hyetographs. | Calculated precipitation return periods. | |
Out of basin local precipitation data consideration. | Simulated and real data comparison. | Validation. | |
2nd Level of Analysis: Characterisation of Local Effects | |||
Different, Particular Effects | Observed Change | Study method | Result |
Observed Effect | Changes in hydrology: | Headwater’s hydrological modelling with different land cover conditions. | Validation of changes. |
Hydrogeomorphic effects: | |||
Hydrogeomorphic processes at the headwaters. | Fieldwork: evidence collection. | Erosion characterisation. Runoff concentration characterisation. | |
Hydrogeomorphic processes in the main channels. | Record of road damages. LiDAR analysis. | Sediment balance. | |
Effects in thedownstream stretch. | Fieldwork: Dendrogeomorphological sampling; geomorphological and topographical mapping; (Total station, GNNS RTK). Dendrogeomorphological analysis. GIS analysis. | Record of torrential dynamics changes downstream. | |
3rd Level of Analysis: Discussion and Knowledge Integration | |||
Holistic Comprehension of the Effects of Change | |||
Geomorphological Threshold Overcoming Corroboration |
Year | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1981 | 1991 | 2001 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|
Inhabitants | 704 | 593 | 460 | 382 | 495 | 659 | 415 | 466 | 537 | 664 |
Type of Vegetation (Area: km2) | 1956 | 1996–1997 | 2008 | 2014 | Δ 2014–1956 |
---|---|---|---|---|---|
Without plant cover | 0.08 | 0.38 | 0.47 | 0.52 | 0.43 |
Meadows | 0.71 | 0.48 | 0.43 | 0.39 | −0.32 |
Bushes | 0.36 | 0.15 | 0.12 | 0.12 | −0.24 |
Open forest | 0.92 | 0.79 | 0.77 | 0.76 | −0.16 |
Dense forest | 0.66 | 0.93 | 0.93 | 0.92 | 0.26 |
Tr | Situation | Control Points (Junctions) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
J6 | J5 | J3 | J8 | J7 | |||||||
Peak Flow | % | Peak Flow | % | Peak Flow | % | Peak Flow | % | Peak Flow | % | ||
10 | Present | 8.1 | 15 | 5.6 | 23 | 4.6 | 26 | 2.2 | −9 | 1.9 | −11 |
1996 | 7.8 | 5.4 | 4.44 | 2.1 | 1.8 | ||||||
1956 | 6.9 | 4.3 | 3.4 | 2.4 | 2.1 | ||||||
100 | Present | 20.5 | 7 | 12.9 | 14 | 10 | 15 | 6.7 | 0 | 5.2 | 7 |
1996 | 20.3 | 12.8 | 9.9 | 6.3 | 5.1 | ||||||
1956 | 19.1 | 11.1 | 8.5 | 6.7 | 5.6 | ||||||
500 | Present | 32.4 | 4 | 19.5 | 9 | 14.7 | 10 | 11.2 | 2 | 8.5 | 4 |
1996 | 32.3 | 19.5 | 14.8 | 10.5 | 8.4 | ||||||
1956 | 31 | 17.7 | 13.2 | 11 | 8.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furdada, G.; Victoriano, A.; Díez-Herrero, A.; Génova, M.; Guinau, M.; De las Heras, Á.; Palau, R.M.; Hürlimann, M.; Khazaradze, G.; Casas, J.M.; et al. Flood Consequences of Land-Use Changes at a Ski Resort: Overcoming a Geomorphological Threshold (Portainé, Eastern Pyrenees, Iberian Peninsula). Water 2020, 12, 368. https://doi.org/10.3390/w12020368
Furdada G, Victoriano A, Díez-Herrero A, Génova M, Guinau M, De las Heras Á, Palau RM, Hürlimann M, Khazaradze G, Casas JM, et al. Flood Consequences of Land-Use Changes at a Ski Resort: Overcoming a Geomorphological Threshold (Portainé, Eastern Pyrenees, Iberian Peninsula). Water. 2020; 12(2):368. https://doi.org/10.3390/w12020368
Chicago/Turabian StyleFurdada, Glòria, Ane Victoriano, Andrés Díez-Herrero, Mar Génova, Marta Guinau, Álvaro De las Heras, Rosa Mª Palau, Marcel Hürlimann, Giorgi Khazaradze, Josep Maria Casas, and et al. 2020. "Flood Consequences of Land-Use Changes at a Ski Resort: Overcoming a Geomorphological Threshold (Portainé, Eastern Pyrenees, Iberian Peninsula)" Water 12, no. 2: 368. https://doi.org/10.3390/w12020368