Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Southwest (SW): catchments of the Bohemian Forest (BLA, KOL, MOD) and the Bavarian Forest (HOL, LOH, LIN)
- Northwest (NW): catchments of the Ore Mountains (KLI, CHA, ROT, REH and AMM)
- Northeast (NE): catchments of the Giant Mountains (JAN, DOL, HOR) and the Broumov Highlands (MAR)
- Availability of at least 50 years of daily streamflow time series;
- Absence of dams, large weirs or other structures significantly regulating streamflow;
- Areal and altitudinal properties (area <100 km2, mean altitude >550 m.a.s.l.).
2.2. Data and Materials
2.3. Methods and Tools
3. Results
3.1. Evolution of Low-Flow and Streamflow Drought Seasonality
3.2. Duration and Magnitude of Summer Streamflow Droughts Events
3.3. Trends of Minimum Discharges
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valiya Veettil, A.; Mishra, A.K. Multiscale hydrological drought analysis: Role of climate, catchment and morphological variables and associated thresholds. J. Hydrol. 2020, 582. [Google Scholar] [CrossRef]
- Cervi, F.; Blöschl, G.; Corsini, A.; Borgatti, L.; Montanari, A. Perennial springs provide information to predict low flows in mountain basins. Hydrol. Sci. J. 2017, 62, 2469–2481. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Raczyński, K.; Dyer, J. Multi-annual and seasonal variability of low-flow river conditions in southeastern Poland. Hydrol. Sci. J. 2020, 00, 1–16. [Google Scholar] [CrossRef]
- Deb, P.; Kiem, A.S.; Willgoose, G. Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia. J. Hydrol. 2019, 571, 749–764. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Zhong, R.; He, Y.; Chen, X. Responses of the hydrological regime to variations in meteorological factors under climate change of the Tibetan plateau. Atmos. Res. 2018, 214, 296–310. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Mozny, M.; Trnka, M.; Vlach, V.; Vizina, A.; Potopova, V.; Zahradnicek, P.; Stepanek, P.; Hajkova, L.; Staponites, L.; Zalud, Z. Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. J. Hydrol. 2020, 590, 125390. [Google Scholar] [CrossRef]
- Petek, M.; Kobold, M.; Šraj, M. Low-flow analysis of streamflows in Slovenia using R software and lfstat package. Acta Hydrotech. 2015, 27, 13–28. [Google Scholar]
- Trnka, M.; Balek, J.; Štepánek, P.; Zahradnícek, P.; Možný, M.; Eitzinger, J.; Žalud, Z.; Formayer, H.; Turna, M.; Nejedlík, P.; et al. Drought trends over part of Central Europe between 1961 and 2014. Clim. Res. 2016, 70, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, J.; Bernsteinová, J. Which Aspects of Hydrological Regime in Mid-Latitude Montane Basins Are Affected by Climate Change? Water 2020, 12, 2279. [Google Scholar] [CrossRef]
- Hanel, M.; Vizina, A.; Máca, P.; Pavlásek, J. A multi-model assessment of climate change impact on hydrological regime in the Czech Republic. J. Hydrol. Hydromech. 2012, 60, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.; Zscheischler, J.; Seneviratne, S.I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Jenicek, M.; Ledvinka, O. Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Blahušiaková, A.; Matoušková, M.; Jeníček, M.; Ledvinka, O.; Kliment, Z.; Podolinská, J.; Snopková, Z. Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrol. Sci. J. 2020, 00, 1–14. [Google Scholar] [CrossRef]
- Laaha, G.; Gauster, T.; Tallaksen, L.M.; Vidal, J.-P.; Stahl, K.; Prudhomme, C.; Heudorfer, B.; Vlnas, R.; Ionita, M.; Van Lanen, H.A.J.; et al. The European 2015 drought from a hydrological perspective. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Jehanzaib, M.; Shah, S.A.; Yoo, J.; Kim, T.W. Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. J. Hydrol. 2020, 588, 125052. [Google Scholar] [CrossRef]
- Brázdil, R.; Trnka, M.; Mikšovský, J.; Řezníčková, L.; Dobrovolný, P. Spring-summer droughts in the Czech Land in 1805-2012 and their forcings. Int. J. Climatol. 2015, 35, 1405–1421. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Rojas, R.; Flörke, M.; Wimmer, F.; Bianchi, A. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 2014, 18, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Brunner, M.I.; Tallaksen, L.M. Proneness of European Catchments to Multiyear Streamflow Droughts. Water Resour. Res. 2019, 55, 8881–8894. [Google Scholar] [CrossRef] [Green Version]
- Stagge, J.H.; Kingston, D.G.; Tallaksen, L.M.; Hannah, D.M. Observed drought indices show increasing divergence across Europe. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jenicek, M.; Seibert, J.; Staudinger, M. Modeling of Future Changes in Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments. Water Resour. Res. 2018, 54, 538–556. [Google Scholar] [CrossRef]
- Bernsteinová, J.; Bässler, C.; Zimmermann, L.; Langhammer, J.; Beudert, B. Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. J. Hydrol. Hydromech. 2015, 63, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Ledvinka, O. Evolution of low flows in Czechia revisited. Proc. Int. Assoc. Hydrol. Sci. 2015, 369, 87–95. [Google Scholar] [CrossRef]
- Langhammer, J.; Su, Y.; Bernsteinová, J. Runoff response to climate warming and forest disturbance in a mid-mountain basin. Water 2015, 7, 3320–3342. [Google Scholar] [CrossRef]
- Demirel, M.C.; Booij, M.J.; Hoekstra, A.Y. Impacts of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin using an ensemble of bias-corrected regional climate simulations. Hydrol. Earth Syst. Sci. 2013, 17, 4241–4257. [Google Scholar] [CrossRef] [Green Version]
- Stahl, K.; Hisdal, H.; Hannaford, J.; Tallaksen, L.M.; Van Lanen, H.A.J.; Sauquet, E.; Demuth, S.; Fendekova, M.; Jódar, J. Streamflow trends in Europe: Evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 2010, 14, 2367–2382. [Google Scholar] [CrossRef] [Green Version]
- Kronenberg, R.; Franke, J.; Bernhofer, C.; Körner, P. Detection of potential areas of changing climatic conditions at a regional scale until 2100 for Saxony, Germany. Meteorol. Hydrol. Water Manag. 2015, 3, 17–26. [Google Scholar] [CrossRef]
- Franke, J.; Goldberg, V.; Eichelmann, U.; Freydank, E.; Bernhofer, C. Statistical analysis of regional climate trends in Saxony, Germany. Clim. Res. 2004, 27, 145–150. [Google Scholar] [CrossRef]
- Tolasz, R.; Míková, T.; Valeriánová, A.; Voženílek, V. Climate Atlas of Czechia, 1st ed.; Czech Hydrometeorological Institute, Palacký University Olomouc: Praha, Czech Republic, 2007; ISBN 978-80-86690-26-1. [Google Scholar]
- Langhammer, J.; Hartvich, F.; Mattas, D.; Rödlová, S.; Zbořil, A. The variability of surface water quality indicators in relation to watercourse typology, Czech Republic. Environ. Monit. Assess. 2012, 184, 3983–3999. [Google Scholar] [CrossRef]
- Czech Hydrometeorological Institute: Database of Surface Water Monitoring Network. Available online: http://portal.chmi.cz (accessed on 31 August 2020).
- Gewässerkundlicher Dienst Bayern: Runoff Bavaria, Bayerisches Landesamt für Umwelt. Available online: https://www.gkd.bayern.de/en (accessed on 2 September 2020).
- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Hydrologische Daten. Available online: https://www.umwelt.sachsen.de/umwelt/infosysteme/lhwz/hydrologische-daten.html (accessed on 2 September 2020).
- Osborn, D.R.; Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter. Economica 1991, 58. [Google Scholar] [CrossRef]
- Golyandina, N.; Korobeynikov, A. Basic Singular Spectrum Analysis and forecasting with R. Comput. Stat. Data Anal. 2014, 71, 934–954. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27. [Google Scholar] [CrossRef] [Green Version]
- Laaha, G.; Blöschl, G. Seasonality indices for regionalizing low flows. Hydrol. Process. 2006, 20, 3851–3878. [Google Scholar] [CrossRef] [Green Version]
- Koffler, D.; Gauster, T.; Laaha, G. lfstat: Calculation of Low Flow Statistics for Daily Stream Flow Data. R Package Version 0.9.4. Available online: https://cran.r-project.org/package=lfstat (accessed on 12 September 2020).
- Young, A.R.; Round, C.E.; Gustard, A. Spatial and temporal variations in the occurrence of low flow events in the UK. Hydrol. Earth Syst. Sci. 2000, 4. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 August 2020).
- Pohlert, T. trend: Non-Parametric Trend Tests and Change-Point Detection. R Package Version 1.1.4. Available online: https://cran.r-project.org/package=trend (accessed on 14 September 2020).
- Gustard, A.; Demuth, S. Manual on Low-flow Estimation and Prediction; World Meteorological Organisation: Geneva, Switzerland, 2008; Volume 50, ISBN 9789263110299. [Google Scholar]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Demuth, S. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. 2006, 10, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Tallaksen, L.M.; Madsen, H.; Clausen, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci. J. 1997, 42, 15–33. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. A Nonparametric Trend Test for Seasonal Data With Serial Dependence. Water Resour. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Libiseller, C.; Grimvall, A. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics 2002, 13, 71–84. [Google Scholar] [CrossRef]
- Assani, A.A.; Landry, R.; Laurencelle, M. Comparison of interannual variability modes and trends of seasonal precipitation and streamflow in southern Quebec (Canada). River Res. Appl. 2012, 28, 1740–1752. [Google Scholar] [CrossRef]
- Kliment, Z.; Matoušková, M.; Ledvinka, O.; Královec, V. Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic. J. Hydrol. Hydromech. 2011, 59, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L. Temporal evolution of low-flow regimes in Canadian rivers. Water Resour. Res. 2008, 44, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hotovy, O.; Jenicek, M. The impact of changing subcanopy radiation on snowmelt in a disturbed coniferous forest. Hydrol. Process. 2020, 1–17. [Google Scholar] [CrossRef]
- Kupková, L.; Potůčková, M.; Lhotáková, Z.; Albrechtová, J. Forest cover and disturbance changes, and their driving forces: A case study in the Ore Mountains, Czechia, heavily affected by anthropogenic acidic pollution in the second half of the 20th century. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Robinson, M.; Cognard-Plancq, A.L.; Cosandey, C.; David, J.; Durand, P.; Führer, H.W.; Hall, R.; Hendriques, M.O.; Marc, V.; McCarthy, R.; et al. Studies of the impact of forests on peak flows and baseflows: A European perspective. For. Ecol. Manag. 2003, 186, 85–97. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N.; et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 2014, 111, 3262–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, L.V.; Tapper, N.; Zhang, X.; Fowler, H.J.; Tebaldi, C.; Lynch, A. Climate extremes: Progress and future directions. Int. J. Climatol. 2009, 29, 317–319. [Google Scholar] [CrossRef]
Stream Gauge | Abbrev. | Stream | Region | Area (km2) | Stream Gauge Coordinates | Gauge Elevation (m.a.s.l.) | Mean Elevation (m.a.s.l.) | Mean Slope (°) | Dominant Hillslope Orientation |
---|---|---|---|---|---|---|---|---|---|
Blanicky Mlyn | BLA | Blanice | SW | 85.47 | 48.957N 13.941E | 743.42 | 897.1 | 5.72 | N; NW |
Kolinec | KOL | Ostruzna | SW | 91.68 | 49.296N 13.436E | 531.65 | 755.7 | 7.33 | NE; N |
Modrava | MOD | Vydra | SW | 89.80 | 49.026N 13.497E | 973.28 | 1146.6 | 5.42 | NE; W |
Höll | HOL | Schwarzach | SW | 59.90 | 49.410N 12.704E | 493.25 | 651.7 | 7.93 | SW; W |
Linden | LIN | Sausswasser | SW | 89.70 | 48.825N 13.565E | 649.74 | 899.2 | 7.81 | SW; W |
Lohberg | LOH | Weißer Regen | SW | 39.30 | 49.172N 13.091E | 575.76 | 927.5 | 13.27 | SW; W |
Klingenthal 1 | KLI | Zwota | NW | 55.70 | 50.354N 12.471E | 540.10 | 719.7 | 8.89 | SE; S |
Chaloupky | CHA | Rolava | NW | 20.06 | 50.374N 12.664E | 804.62 | 907.1 | 3.95 | S; SW |
Rothenthal | ROT | Natzschung | NW | 76.10 | 50.619N 13.360E | 538.22 | 762.8 | 5.10 | NE; N |
Rehefeld 2 | REH | Wilde Weißeritz | NW | 15.40 | 50.728N 13.701E | 685.45 | 805.6 | 5.93 | W; NW |
Ammelsdorf | AMM | Wilde Weißeritz | NW | 49.30 | 50.805N 13.607E | 527.37 | 734.4 | 7.12 | NE; W |
Janov–Harrachov | JAN | Mumlava | NE | 51.31 | 50.765N 15.397E | 580.65 | 978.7 | 11.08 | SW; W |
Dolni Stepanice | DOL | Jizerka | NE | 44.08 | 50.638N 15.517E | 441.51 | 860.3 | 13.88 | SW; S |
Horni Marsov | HOR | Upa | NE | 81.99 | 50.661N 15.820E | 570.45 | 1048.4 | 16.01 | SE; E |
Marsov n. Metuji | MAR | Metuje | NE | 94.68 | 50.530N 16.190E | 418.03 | 583.7 | 8.07 | E; SE |
Gauge | Qa (m3 s−1) | Qmed (m3 s−1) | qa (L s−1 km−2) | Q90 (m3 s−1) | Q95 (m3 s–1) | q90 (L s−1 km−2) | q95 (L s−1 km−2) | MAM-30 (m3 s−1) | MAM-7 (m3 s−1) |
---|---|---|---|---|---|---|---|---|---|
BLA | 0.898 | 0.540 | 10.51 | 0.250 | 0.205 | 2.93 | 2.4 | 0.268 | 0.217 |
KOL | 1.170 | 0.840 | 12.76 | 0.360 | 0.290 | 3.93 | 3.16 | 0.410 | 0.340 |
MOD | 3.302 | 2.180 | 36.77 | 1.190 | 1.050 | 13.25 | 11.69 | 1.271 | 1.086 |
HOL | 0.797 | 0.535 | 13.31 | 0.282 | 0.246 | 4.71 | 4.11 | 0.321 | 0.245 |
LIN | 2.241 | 1.560 | 24.98 | 0.815 | 0.714 | 9.09 | 7.96 | 0.836 | 0.723 |
LOH | 1.187 | 0.876 | 30.20 | 0.457 | 0.393 | 11.63 | 10 | 0.481 | 0.423 |
KLI | 1.170 | 0.705 | 21.01 | 0.290 | 0.219 | 5.21 | 3.93 | 0.294 | 0.250 |
CHA | 0.560 | 0.400 | 27.92 | 0.170 | 0.133 | 8.47 | 6.63 | 0.183 | 0.146 |
ROT | 1.403 | 0.920 | 18.44 | 0.332 | 0.260 | 4.36 | 3.42 | 0.360 | 0.283 |
REH | 0.361 | 0.194 | 23.44 | 0.061 | 0.040 | 3.96 | 2.6 | 0.072 | 0.051 |
AMM | 0.939 | 0.570 | 19.05 | 0.170 | 0.116 | 3.45 | 2.35 | 0.183 | 0.131 |
JAN | 1.914 | 1.140 | 37.30 | 0.544 | 0.450 | 10.6 | 8.77 | 0.590 | 0.467 |
DOL | 1.217 | 0.763 | 27.61 | 0.300 | 0.247 | 6.81 | 5.6 | 0.362 | 0.297 |
HOR | 2.425 | 1.680 | 29.58 | 0.780 | 0.626 | 9.51 | 7.64 | 0.832 | 0.691 |
MAR | 0.983 | 0.700 | 10.38 | 0.414 | 0.342 | 4.37 | 3.61 | 0.444 | 0.409 |
Southwestern Region (SW) | Northwestern Region (NW) | Northeastern Region (NE) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLA | KOL | MOD | HOL | LIN | LOH | KLI | CHA | ROT | REH | AMM | JAN | DOL | HOR | MAR | |
SR (q90) | 0.85 | 0.85 | 1.20 | 0.70 | 0.85 | 0.91 | 0.59 | 0.94 | 0.62 | 0.50 | 0.45 | 0.97 | 0.83 | 1.01 | 0.82 |
SR (q95) | 0.82 | 0.80 | 1.14 | 0.70 | 0.87 | 0.92 | 0.57 | 1.12 | 0.62 | 0.57 | 0.49 | 0.91 | 0.79 | 0.97 | 0.84 |
Southwestern Region (SW) | Northwestern Region (NW) | Northeastern Region (NE) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLA | KOL | MOD | HOL | LIN | LOH | KLI | CHA | ROT | REH | AMM | JAN | DOL | HOR | MAR | |
SI (Q90) Θ | 4.41 | 4.37 | 5.89 | 4.05 | 4.82 | 4.90 | 4.31 | 4.87 | 4.51 | 4.19 | 4.26 | 4.72 | 4.52 | 5.01 | 4.74 |
SI (Q90) r | 0.41 | 0.40 | 0.39 | 0.62 | 0.56 | 0.42 | 0.59 | 0.38 | 0.62 | 0.55 | 0.63 | 0.31 | 0.47 | 0.36 | 0.48 |
SI (Q90) D | 256 | 254 | 342 | 235 | 280 | 284 | 250 | 283 | 262 | 244 | 248 | 274 | 262 | 291 | 275 |
SI (Q90) Date | 13 September | 11 September | 8 December | 23 August | 7 October | 11 October | 7 September | 10 October | 19 September | 1 September | 5 September | 1 October | 19 September | 18 October | 2 October |
SI (Q95) Θ | 4.33 | 4.27 | 6.10 | 3.95 | 4.77 | 4.88 | 4.27 | 5.03 | 4.57 | 4.21 | 4.38 | 4.56 | 4.48 | 5.04 | 4.79 |
SI (Q95) r | 0.51 | 0.59 | 0.45 | 0.69 | 0.59 | 0.40 | 0.70 | 0.38 | 0.69 | 0.52 | 0.71 | 0.47 | 0.58 | 0.45 | 0.60 |
SI (Q95) D | 252 | 248 | 354 | 230 | 277 | 284 | 248 | 292 | 265 | 245 | 254 | 265 | 260 | 293 | 278 |
SI (Q95) Date | 9 September | 5 September | 20 December | 18 August | 4 October | 11 October | 5 September | 19 October | 22 September | 2 September | 11 September | 22 September | 17 September | 20 October | 5 October |
Southwestern Region (SW) | Northwestern Region (NW) | Northeastern Region (NE) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLA | KOL | MOD | HOL | LIN | LOH | KLI | CHA | ROT | REH | AMM | JAN | DOL | HOR | MAR | |
MSM-30 | − | − | − | − | − | − | − | – | − | − | − | − | + | − | − |
MSM-7 | − | − | − | − | − | − | − | – | − | − | − | − | + | − | − |
Southwestern Region (SW) | Northwestern Region (NW) | Northeastern Region (NE) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | BLA | KOL | MOD | HOL | LIN | LOH | KLI | CHA | ROT | REH | AMM | JAN | DOL | HOR | MAR |
1968–1997 | − | − | − | + | + | + | − | + | − | + | + | + | + | − | − |
1969–1998 | − | − | + | − | − | + | − | + | − | + | + | + | + | + | + |
1970–1999 | − | − | + | − | − | + | − | + | − | − | + | + | + | − | − |
1971–2000 | − | − | − | + | − | − | − | + | − | − | + | + | + | − | − |
1972–2001 | − | − | − | − | − | − | − | + | − | − | − | + | + | − | − |
1973–2002 | − | − | − | + | − | − | − | + | − | − | + | + | + | + | − |
1974–2003 | − | − | − | − | − | − | − | − | − | − | + | + | + | − | − |
1975–2004 | − | − | − | − | − | − | − | − | − | − | + | + | + | − | − |
1976–2005 | − | − | − | − | − | − | − | − | − | − | + | + | + | − | − |
1977–2006 | − | − | − | − | − | − | − | − | − | − | − | + | + | − | − |
1978–2007 | − | − | − | − | − | − | − | − | − | − | − | + | + | − | − |
1979–2008 | − | − | − | − | − | − | − | − | − | − | − | + | + | + | − |
1980–2009 | − | − | − | − | + | + | − | − | − | − | + | + | + | + | − |
1981–2010 | − | + | − | − | + | + | − | − | − | − | + | + | + | + | − |
1982–2011 | − | + | + | + | + | + | − | + | − | + | + | + | + | + | − |
1983–2012 | + | + | + | + | + | + | − | − | − | − | + | + | + | + | − |
1984–2013 | + | + | + | + | − | + | − | − | − | − | + | − | − | + | − |
1985–2014 | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − |
1986–2015 | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − |
1987–2016 | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − |
1988–2017 | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − |
1989–2018 | − | + | − | − | − | − | − | − | − | − | − | − | − | + | − |
1990–2019 | − | − | − | − | − | − | − | − | − | − | − | − | − | + | − |
Southwestern Region (SW) | Northwestern Region (NW) | Northeastern Region (NE) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | BLA | KOL | MOD | HOL | LIN | LOH | KLI | CHA | ROT | REH | AMM | JAN | DOL | HOR | MAR |
1968–1997 | + | − | − | + | − | + | − | + | − | + | + | + | + | − | − |
1969–1998 | + | − | − | + | − | + | − | + | − | + | + | + | + | − | − |
1970–1999 | − | − | − | + | − | − | − | + | − | − | + | + | + | − | − |
1971–2000 | − | − | − | + | − | − | − | + | − | − | + | + | + | − | − |
1972–2001 | − | − | − | + | − | − | − | + | − | − | + | + | + | − | − |
1973–2002 | − | − | − | + | − | − | − | + | − | − | + | + | + | − | − |
1974–2003 | − | − | − | − | − | − | − | + | − | − | + | + | + | − | − |
1975–2004 | − | − | − | − | − | − | − | + | − | − | + | + | + | − | − |
1976–2005 | − | − | − | − | − | − | − | − | − | − | + | + | + | − | − |
1977–2006 | − | − | − | − | − | − | − | − | − | − | + | + | + | − | − |
1978–2007 | − | − | − | − | − | − | − | + | − | − | + | + | + | − | − |
1979–2008 | − | − | − | − | − | − | − | − | − | − | + | + | + | + | − |
1980–2009 | − | − | − | − | − | − | − | − | − | − | + | + | + | + | − |
1981–2010 | − | − | + | − | + | + | − | − | − | − | + | + | + | + | − |
1982–2011 | − | + | + | + | + | + | − | + | − | + | + | + | + | + | − |
1983–2012 | − | + | + | − | + | + | − | + | − | + | + | + | + | + | − |
1984–2013 | − | + | + | − | + | + | − | − | − | + | + | + | − | + | − |
1985–2014 | − | + | + | − | − | + | − | − | − | + | + | − | − | + | − |
1986–2015 | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − |
1987–2016 | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − |
1988–2017 | − | + | + | − | − | + | − | − | − | + | − | − | − | + | − |
1989–2018 | − | − | − | − | − | + | − | − | − | − | − | − | − | + | − |
1990–2019 | − | − | − | − | − | − | − | − | − | − | − | − | − | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlach, V.; Ledvinka, O.; Matouskova, M. Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters. Water 2020, 12, 3575. https://doi.org/10.3390/w12123575
Vlach V, Ledvinka O, Matouskova M. Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters. Water. 2020; 12(12):3575. https://doi.org/10.3390/w12123575
Chicago/Turabian StyleVlach, Vojtech, Ondrej Ledvinka, and Milada Matouskova. 2020. "Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters" Water 12, no. 12: 3575. https://doi.org/10.3390/w12123575
APA StyleVlach, V., Ledvinka, O., & Matouskova, M. (2020). Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters. Water, 12(12), 3575. https://doi.org/10.3390/w12123575