Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Herbs
2.1.2. Water
2.2. Methods
2.2.1. Treatment of Water with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency
2.2.2. Substrate
2.2.3. Trays
2.2.4. Herb Plantation
2.2.5. Ash
2.2.6. Humidity and Final Mass of Plants
2.2.7. Condition of Plants
2.2.8. Separation of Essential Oils for Determination of Their Yield
2.2.9. Gas Chromatographic Analyses
2.3. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oszczęda, Z.; Elkin, I.; Stręk, W. Equipment for Treatment of Water with Plasma. Polish Patent PL 216025 B1, 28 February 2014. [Google Scholar]
- Reszke, E.; Yelkin, I.; Oszczęda, Z. Plasming Lamp with Power Supply. Polish Patent PL 227530 B1, 26 October 2017. [Google Scholar]
- Białopiotrowicz, T.; Ciesielski, W.; Domański, J.; Doskocz, M.; Fiedorowicz, M.; Grąż, K.; Khachatryan, K.; Kołoczek, H.; Kozak, A.; Oszczęda, Z.; et al. Structure and physicochemical properties of water treated with low-temperature low-frequency plasma. Curr. Phys. Chem. 2016, 6, 312–320. [Google Scholar] [CrossRef]
- Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Tomasik, P.; Witczak, M. Structure and physicochemical properties of water treated under nitrogen with low-temperature glow plasma. Water 2020, 12, 1314. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Tomasik, P. Structure and physicochemical properties of water treated under ammonia with low-temperature glow plasma of low-frequency. Open Chem. 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P. Structure and physicochemical properties of water treated under carbon dioxide with low-temperature glow plasma of low frequency. Water 2020, 12, 1920. [Google Scholar] [CrossRef]
- Chwastowski, J.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P.; Witczak, M. Water of increased content of molecular oxygen. Water 2020, 12, 2488. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P. Structure and physicochemical properties of water treated under methane with low-temperature glow plasma of low frequency. Water 2020, 12, 1638. [Google Scholar] [CrossRef]
- Wolski, K.; Talar-Krasa, M.; Leshschenko, A.; Dradrach, A.; Adamczewska-Sowińska, K.; Oszczęda, Z. Application of nanowater and biopreparations in agriculture. Stud. Monogr. Polit. Opolska 2014, 404, 265–372. (In Polish) [Google Scholar]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P. Effect of water treated with low-pressure, low-temperature glow plasma of low frequency on planted peppermint (Mentha piperita). EJPAU Ser. Biotechnol. 2018, 21. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Kulawik, D.; Oszczęda, Z.; Tomasik, P. Cultivation of cress involving water treated under different atmospheres with low-temperature, low-pressure glow plasma of low frequency. Water 2020, 12, 2152. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Girek, T.; Kołoczek, H.; Oszczęda, Z.; Tomasik, P. Reaction of Lavandula angustifolia Mill. to water treated with low-temperature, low- pressure glow plasma of low frequency. Water 2020, 12, 3168. [Google Scholar] [CrossRef]
- Ciesielski, W.; Gąstoł, M.; Girek, T.; Kulawik, D.; Oszczęda, Z.; Pisulewska, E.; Tomasik, P. Specific controlling essential oil composition of basil (Ocimum basilicum L.). Water 2020, 12, 3332. [Google Scholar] [CrossRef]
- Ciesielski, W.; Gąstoł, M.; Girek, T.; Kulawik, D.; Oszczęda, Z.; Pisulewska, E.; Tomasik, P. Specific modulation of flavor and aroma of Greek oregano (Origanum vulgare) and its essential oil. Water 2020, submitted. [Google Scholar]
- Downie, S.R.; Plunkett, G.M.; Watson, M.F.; Spalik, K.; Katz-Downie, D.S.; Valiejo-Roman, C.M.; Terentieva, E.I.; Troitsky, A.V.; Lee, B.-Y.; Lahham, J.; et al. Tribes and clades within Apiaceae subfamily Apioideae: The contribution of molecular data. Edin. J. Botany 2001, 58, 301–330. [Google Scholar] [CrossRef]
- Huxley, A. New RHS Dictionary of Gardening; Macmillan: London, UK, 1992; ISBN 0-333-47494-5. [Google Scholar]
- Ashwood-Smith, M.J.; Ceska, O.; Yeoman, A.; Kenny, P.G. Photosensitivity from harvesting lovage (Levisticum officinale). Contact Derm. 1993, 26, 356–357. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Community Herbal Monograph on Levisticum Officinale Koch, Radix, 2012-03-27; European Medicines Agency: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Marjoram, H. Food Reference. 2017. Available online: http://www.foodreference.com/html/tmarjoram.htmlhttp://www.foodreference.com/html/tmarjoram.html (accessed on 20 October 2020).
- Burlando, B.; Verotta, L.; Cornara, L.; Bottini-Massa, E. Herbal Principles in Cosmetics Properties and Mechanisms of Action; CRC Press: Boca Raton, FL, USA, 2010; p. 303. ISBN 978-1-4398-1214-3. [Google Scholar]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Daniells, S. Oregano, Rosemary Extracts Promise Omega-3 Preservation. Food Navigator, 20 November 2017. [Google Scholar]
- Easter, M. International Thymus Register and Checklist; BPR Publishers: London, UK, 2009; ISBN 0956339808. [Google Scholar]
- Grieve, M. Thyme. A Modern Herbal. Available online: https://botanical.com/botanical/mgmh/t/thygar16.html (accessed on 15 November 2020).
- PDR for Herbal Medicine. Thymus Vulgaris; Medical Economics Company: Montvale, NJ, USA, 2020; p. 1184. Available online: http://snst-hu.lzu.edu.cn/zhangyi/ndata/Thyme.html (accessed on 20 October 2020).
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Pierce, A. American Pharmaceutical Association Practical Guide to Natural Medicines; Stonesong Press: New York, NY, USA, 1999; pp. 338–340. [Google Scholar]
- Tawfik, S.S.; Abbady, M.I.; Zahran, A.M.; Abouelalla, A.M.K. Therapeutic efficacy attained with thyme essential oil supplementation throughout γ-irradiated rats. Egypt. J. Rad. Sci. Applic. 2006, 19, 1–22. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Profiles. In Essential Oil Safety; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Chapter 13. [Google Scholar]
- Yang, F.; Lin, Z.W.; Huang, T.Y.; Chen, T.T.; Cui, J.; Li, M.Y.; Hua, Y.Q. Ligustilide, amajor bioactive component of Angelica sinensis, promotes bone formation viathe GPR30/EGFR pathway. Sci. Rep. 2019, 9, 6991. [Google Scholar] [CrossRef] [Green Version]
- Braun, N.A.; Meier, M. δ-Terpinyl acetate. A new natural component from the essential leaf oil of L. (Lauraceae). J. Ess. Oil Res. 2001, 13, 95–97. [Google Scholar] [CrossRef]
- Boland, D.J.; Brophy, J.J.; House, A.P.N. Eucalyptus Leaf Oils; Inkata Press: Melbourne, Australia, 1991; ISBN 0-909605-69-6. [Google Scholar]
- Arunkumar, R.; Nair, S.A.; Rameshkumar, K.B.; Subramoniam, A. The essential oil constituents of Zornia diphylla (L.) Pers, and anti-inflammatory and antimicrobial activities of the oil. Rec. Nat. Prod. 2014, 8, 385–393. [Google Scholar]
- U.S. Environmental Protection Agency. Pesticide Fact Sheet #128986. Available online: http://npic.orst.edu/npicfact.htm (accessed on 20 October 2020).
- Klocke, J.A.; Darlington, M.V.; Balandrin, M.F. 8-Cineole (Eucalyptol), a mosquito feeding and ovipositional repellent from volatile oil of Hemizonia fitchii (Asteraceae). J. Chem. Ecol. 1987, 13, 2131–2141. [Google Scholar] [CrossRef] [PubMed]
- Sfara, V.; Zerba, E.N.; Alzogaray, R.A. Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. J. Med. Entomol. 2009, 46, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Jakus, R.; Blazenec, M. Influence of proportion of (4S)-cis-verbenol in pheromone bait on Ips typographus (Co., Scolytidae) catch in pheromone trap barrier and in single trap. J. Appl. Entomol. 2002, 126, 306–311. [Google Scholar] [CrossRef]
Estimation | Herb/Water a | |||||||
---|---|---|---|---|---|---|---|---|
Lovage Control | Lovage LPGPA | Marjoram Control | Marjoram LPGPA | Rosemary Control | Rosemary LPGPA | Thyme Control | Thyme LPGPA | |
Number of plants | 14 ± 0.5 | 19 ± 1.0 | 25 ± 1.0 | 34 ± 0.5 | 18 ± 1.0 | 27 ± 1.0 | 39 ± 0.5 | 45 ± 0.5 |
Height of plants/1 pot [cm] | 28.4 ± 2.1 | 36.4 ± 1.1 | 12.6 ± 1.7 | 17.6 ± 1.4 | 16.3 ± 1.2 | 26.3 ± 1.3 | 7.1 ± 0.3 | 8.7 ± 0.4 |
Total mass of plant [g] | 126.1 ± 1.3 | 138.1 ± 1.5 | 65.1 ± 0. 5 | 71.1 ± 0.3 | 61.1 ± 0.3 | 74.1 ± 0.2 | 110.3 ± 1.5 | 116.2 ± 0.7 |
Total number of leaves | 42 ± 2 | 47 ± 2 | 92 ± 2 | 103 ± 2 | 137 ± 2 | 143 ± 3 | 224 ± 1 | 233 ± 2 |
Number of leaves per plant | 16 ± 3 | 19 ± 3 | 17 ± 3 | 19 ± 2 | 11 ± 2 | 13 ± 3 | 13 ± 2 | 16 ± 2 |
Mass of stems [g] | 77.83 ± 0.14 | 84.73 ± 0.13 | 31.05 ± 0.16 | 36.76 ± 0.12 | 32.76 ± 0.12 | 36.26 ± 0.12 | 2.16 ± 0.12 | 4.29 ± 0.12 |
Total mass of foliage [g] | 43.98 ± 0.23 | 50.51 ± 0.22 | 35.02 ± 0.28 | 35.13 ± 0.28 | 30.25 ± 0.32 | 29.18 ± 0.19 | 108.32 ± 0.12 | 112.93 ± 0.62 |
Mass of one leaf | 0.334 ± 0.018 | 0.338 ± 0.017 | 0.121 ± 0.012 | 0.127 ± 0.012 | 0.094 ± 0.011 | 0.097 ± 0.009 | 0.213 ± 0.020 | 0.214 ± 0.011 |
Humidity [%] | 11.29 ± 0.21 | 11.32 ± 0.23 | 9.15 ± 0.18 | 9.25 ± 0.17 | 8.23 ± 0.09 | 8.35 ± 0.04 | 6.35 ± 0.12 | 6.48 ± 0.11 |
Ash [%/per 1 g dry residue] | 1.32 ± 0.08 | 1.49 ± 0.07 | 1.65 ± 0.03 | 1.87 ± 0.02 | 1.23 ± 0.03 | 1.35 ± 0.04 | 1.68 ± 0.04 | 1.82 ± 0.06 |
Peak Position in Chromatogram | Retention Time [min] | Component | Herb/Water | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Lovage | Marjoram | Rosemary | Thyme | |||||||
Control | LPGPA | Control | LPGPA | Control | LPGPA | Control | LPGPA | |||
1 | 7.08 | β-Thujene | - | - | 0.49 | 0.27 | - | - | 0.21 | 0.08 |
2 | 7.27 | α-Pinene | 0.11 | 0.03 | 0.16 | 0.09 | 2.85 | 4.86 | 0.12 | 0.06 |
3 | 7.68 | Camphene | - | - | 0.02 | - | 1.,73 | 0.72 | 0.03 | 0.02 |
4 | 7.77 | Dihydrosabinene | - | - | - | - | 0.05 | - | - | - |
5 | 8.22 | Sabinene | 0.51 | 0.27 | 8.25 | 10.18 | 0.12 | - | 0.17 | 0.19 |
6 | 8.36 | 1-Octen-3-ol | - | - | - | - | - | - | 1.23 | 1.00 |
7 | 8.38 | (-)-β-Pinene | 0.12 | 0.11 | 0.35 | 0.21 | 2.50 | 2.49 | - | - |
8 | 8.49 | 3-Octanone | - | - | - | - | - | - | 0.07 | 0.06 |
9 | 8.60 | β-Pinene | 0.11 | 2.44 | 2.09 | 2.00 | 1.25 | 1.15 | 1.33 | 1.54 |
11 | 9.02 | ψ-Limonene | 0.06 | 0.06 | - | - | - | - | - | - |
12 | 9.05 | α-Phellandrene | 0.65 | 0.35 | 0.30 | 0.76 | 0.42 | 0.20 | 0.25 | |
13 | 9,13 | 3-Carene | - | - | - | - | 2.48 | 2.31 | - | - |
14 | 9.32 | α-Terpinene | 0.05 | 1.67 | 1.56 | 0.27 | 0.23 | 1.92 | 2.34 | |
16 | 9.51 | o-Cymene | 0.17 | 0.14 | 0.05 | 0.06 | 0.28 | 0.79 | 6.84 | 6.39 |
17 | 9,63 | D-Limonene | 2.82 | 2.45 | 1.60 | 1.49 | 4.74 | 5.64 | 0.25 | 0.29 |
18 | 9.70 | β-Phellandrene | 20.03 | 17.64 | 2.30 | 2.15 | - | - | - | - |
19 | 9.71 | Eucalyptol | - | - | - | - | 12.41 | 9.39 | 0.62 | 0.58 |
20 | 9.77 | trans-β-Ocimene | 0.44 | 1.16 | 0.08 | 0.08 | - | - | - | - |
21 | 10.04 | β-Ocimene | 0.01 | 0.04 | 0.46 | 0.44 | - | - | - | - |
22 | 10.37 | γ-Terpinene | 3.52 | 2.13 | 2.00 | 0.35 | 0.37 | 16.17 | 18.76 | |
23 | 10.67 | cis-β-Terpineol | - | - | 3.90 | 3.79 | 0.96 | 0.90 | 1.86 | 1.77 |
25 | 11.09 | Terpinolene | 0.38 | 0.31 | 0.56 | 0.54 | 2.29 | 1.76 | - | - |
26 | 11.32 | 3-Hexen-1-ol, propanoate, (Z)- | - | - | - | - | - | - | 0.09 | 0.07 |
27 | 11.40 | Linalool | - | - | - | - | 2.63 | 2.44 | 2.67 | 2.37 |
28 | 11.46 | cis-4-Thujanol | - | - | 38.16 | 37.36 | 0.86 | 0.97 | - | - |
29 | 11.98 | Chrysanthenone | - | - | - | - | 0.30 | 0.17 | - | - |
30 | 12.11 | Neo-allo-ocimene | 0.07 | 0.58 | 0.14 | 0.13 | 0.15 | 0.13 | - | - |
31 | 12.24 | Artemiseole | - | - | - | - | 0.09 | - | - | - |
32 | 12.50 | trans-(-)-Pinocarveol | - | - | 0.04 | 0.04 | - | - | - | - |
33 | 12.51 | cis-Verbenol | - | - | - | - | 0.91 | 1.08 | - | - |
34 | 12.63 | Camphor | - | - | - | - | 16.46 | 12.20 | - | - |
35 | 12.89 | 6-Butyl-1,4-cycloheptadiene | 0.01 | 0.33 | - | - | - | - | - | - |
37 | 13.02 | Pinocarvone | - | - | 0.02 | - | 0.34 | 0.32 | - | - |
38 | 13.14 | Camphenol | - | - | - | - | 0.21 | 0.28 | - | - |
39 | 13.19 | 1,3-Dimethyl-1-cyclohexene | - | - | - | - | 0.21 | 0.21 | - | - |
40 | 13.24 | endo-Borneol-Dup1 | - | - | 0.07 | 0.07 | 7.92 | 10.04 | 0.11 | 0.08 |
41 | 13.35 | Isocamphopinone | - | - | - | - | 3.11 | 2.26 | - | - |
42 | 13.37 | o-Mentha-1(7),8-dien-3-ol | 0.47 | 0.36 | - | - | - | - | - | - |
44 | 13.45 | Terpinen-4-ol | - | - | 0.72 | 1.02 | 0.32 | 0.62 | 0.13 | 0.12 |
46 | 13.80 | α-Terpineol | 0.13 | 0.13 | 3.11 | 3.18 | 1.05 | 2.63 | 0.10 | 0.10 |
47 | 13.84 | Myrtenol | - | - | - | - | 0.29 | 0.36 | - | - |
48 | 13.87 | Dihydrocarvone | - | - | 0.14 | - | - | - | - | - |
49 | 13.99 | endo-Borneol | - | - | - | - | 0.89 | 0.86 | - | - |
50 | 14.04 | trans-Dihydrocarvone | - | - | - | 0.09 | - | - | - | - |
51 | 14.11 | cis-Verbenone | - | - | - | - | 15.80 | 14.62 | - | - |
54 | 14.91 | trans-Shisool | - | - | - | - | 0.68 | 0.79 | - | - |
56 | 14.97 | Carvone | - | - | - | - | 0.03 | - | - | - |
57 | 15.08 | Dihydrocarveol | - | - | - | - | 1.33 | 1.53 | - | - |
58 | 15.08 | Linalyl acetate | - | - | 18.28 | 17.89 | - | - | - | - |
59 | 15.08 | Thymoquinone | - | - | - | - | - | - | 0.30 | 0.22 |
60 | 15.12 | 4-Terpinenyl acetate | - | - | 11.21 | 12.29 | - | - | - | - |
61 | 15.57 | p-Mentha-1,8-dien-3-one | - | - | - | - | 0.30 | 0.41 | - | - |
62 | 15.81 | Carveol | - | - | - | - | 2.17 | 0.36 | - | - |
64 | 15.92 | Bornyl acetate | 0.05 | - | 0.06 | 0.05 | 5.29 | 9.63 | - | - |
65 | 16.00 | Carveol-Dup1 | - | - | - | - | 0.51 | 0.23 | - | - |
66 | 16.04 | Thymol | - | - | - | - | - | - | 59.32 | 58.20 |
68 | 16.33 | Carvacrol | - | - | - | - | - | - | 4.26 | 3.90 |
70 | 16.81 | Elixene-Dup1 | - | - | 0.07 | 0.06 | - | - | - | - |
71 | 17.05 | Elixene | - | - | 0.78 | 0.65 | - | - | - | - |
72 | 17.33 | α-Terpinyl acetate | 24.38 | 20.76 | - | - | - | - | - | - |
74 | 17.53 | Nerol acetate | - | - | 0.10 | - | - | - | - | - |
75 | 17.68 | trans-Shisool-Dup1 | - | - | - | - | 0.04 | 0.15 | - | - |
77 | 17.96 | Geranyl acetate | 0.23 | 0.06 | 0.17 | 0.16 | - | - | - | - |
79 | 18.03 | Copaene | - | - | - | - | 0.13 | - | - | - |
82 | 18.97 | Caryophyllene | - | - | 1.53 | 1.30 | 3.75 | 4.89 | 1.45 | 1.16 |
83 | 19.14 | β-Copaene | - | - | - | - | 0.06 | - | - | - |
86 | 19.52 | Humulene | - | - | 0.06 | 0.67 | 0.51 | - | - | |
87 | 19.59 | Geranyl propionate | - | - | - | - | - | - | 0.12 | 0.11 |
88 | 19.83 | Germacrene D | 0.11 | 0.12 | - | - | - | - | 0.21 | 0.16 |
89 | 19.99 | γ-Elemene | - | - | 0.88 | 0.55 | - | - | - | - |
92 | 20.16 | γ-Cadinene | - | - | - | - | 0.17 | 0.09 | - | - |
93 | 20.20 | σ-Cadinene | - | - | - | - | 0.11 | 0.34 | - | - |
95 | 20.80 | Caryophyllene oxide | - | - | - | - | 0.18 | 0.85 | - | - |
96 | 21.03 | Cubenol | 0.02 | 0.03 | - | - | - | - | - | - |
97 | 21.21 | τ-Cadinol | - | - | - | - | - | - | 0.22 | 0.18 |
98 | 21.68 | Butylidenephthalide | 0.30 | 0.46 | - | - | - | - | - | - |
100 | 21,75 | cis-Ligustilide | 20.12 | 14.13 | - | - | - | - | - | - |
101. | 22.10 | trans-Ligustilide | 29.35 | 34.17 | - | - | - | - | - | - |
Total numer of components | 23 | 25 | 34 | 30 | 47 | 41 | 26 | 26 | ||
Yield of essential oil [mL/100g dry mass] | 0.4 | 0.5 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesielska, K.; Ciesielski, W.; Girek, T.; Oszczęda, Z.; Tomasik, P. Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water 2020, 12, 3526. https://doi.org/10.3390/w12123526
Ciesielska K, Ciesielski W, Girek T, Oszczęda Z, Tomasik P. Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water. 2020; 12(12):3526. https://doi.org/10.3390/w12123526
Chicago/Turabian StyleCiesielska, Katarzyna, Wojciech Ciesielski, Tomasz Girek, Zdzisław Oszczęda, and Piotr Tomasik. 2020. "Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency" Water 12, no. 12: 3526. https://doi.org/10.3390/w12123526
APA StyleCiesielska, K., Ciesielski, W., Girek, T., Oszczęda, Z., & Tomasik, P. (2020). Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water, 12(12), 3526. https://doi.org/10.3390/w12123526