Length Parameter for Scaling Abutment Scour Depth
Abstract
1. Introduction
2. Dimensional Analysis
3. Possible Length Scales
4. Comparisons
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation
B | channel width |
b | transverse abutment length |
maximum scour depth in scour hole | |
median diameter of sediment grains | |
d | pier width |
g | gravitational acceleration |
h | flow depth |
L1~L5 | characteristic length parameters |
r | correlation coefficient |
hydraulic radius | |
U | bulk velocity of approach flow |
geometric standard deviation of grain diameters | |
fluid density | |
grain density |
References
- Richardson, E.V.; Lagasse, P.F.; Schall, J.D.; Ruff, J.F.; Brisbane, T.E.; Frick, D.M. Hydraulic, Erosion and Channel Stability Analysis of the Schoharie Creek Bridge failure, New York; Resources Consultants, Inc.: Fort Collins, CO, USA; Colorado State University: Fort Collins, CO, USA, 1987. [Google Scholar]
- Ettema, R.; Nakato, T.; Muste, M. Estimation of Scour Depth at Bridge Abutments; Transportation Research Board: Washington, DC, USA, 2010. [Google Scholar]
- Lim, S.-Y. Equilibrium clear-water scour around an abutment. J. Hydraul. Eng. 1997, 123, 237–243. [Google Scholar] [CrossRef]
- Kandasamy, J.K.; Melville, B.W. Maximum local scour depth at bridge piers and abutments. J. Hydraul. Res. 1998, 36, 183–198. [Google Scholar] [CrossRef]
- Melville, B.W. Local scour at bridge abutments. J. Hydraul. Eng. 1992, 118, 615–631. [Google Scholar] [CrossRef]
- Melville, B.W. Pier and abutment scour: Integrated approach. J. Hydraul. Eng. 1997, 123, 125–136. [Google Scholar] [CrossRef]
- Kothyari, U.; Raju, K. Scour around spur dikes and bridge abutments. J. Hydraul. Res. 2001, 39, 367–374. [Google Scholar] [CrossRef]
- Oliveto, G.; Hager, W.H. Temporal evolution of clear-water pier and abutment scour. J. Hydraul. Eng. 2002, 128, 811–820. [Google Scholar] [CrossRef]
- Coleman, S.E.; Lauchlan, C.S.; Melville, B.W. Clear-water scour development at bridge abutments. J. Hydraul. Res. 2003, 41, 521–531. [Google Scholar] [CrossRef]
- Garde, R.J.; Subramanya, K.S.; Nambudripad, K.D. Study of scour around spur-dikes. J. Hydraul. Div. 1961, 87, 23–37. [Google Scholar]
- Gill, M.A. Erosion of sand beds around spur dikes. J. Hydraul. Div. 1972, 98, 1587–1602. [Google Scholar]
- Sturm, T.W.; Ettema, R.; Melville, B. Evaluation of bridge-scour research abutment and contraction scour processes and prediction. Washington, D.C. In National Cooperative Highway Research Program; Transportation Research Board of the National Academies: Washington, DC, USA, 2011. [Google Scholar]
- Hong, S.H.; Sturm, T.W.; Stoesser, T. Clear water abutment scour in a compound channel for extreme hydrologic events. J. Hydraul. Eng. 2015, 141, 1–12. [Google Scholar] [CrossRef]
- Cheng, N.-S.; Wei, M. Scaling of scour depth at bridge pier based on characteristic dimension of large-scale vortex. Water 2019, 11, 2458. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Nwachukwu, B.A. Erosion near groin-like structures. J. Hydraul. Res. 1983, 21, 277–287. [Google Scholar] [CrossRef]
- Cardoso, A.H.; Santos, J.S.; Roca, M. Effects of flow intensity, obstacle alignmnet and cross-section geometry on scour at bridge abutments. Int. J. Sediment Res. 2002, 17, 339–340. [Google Scholar]
- Molinas, A. Bridge Scour in Nonuniform Sediment Mixtures and in Cohesive Materials: Synthesis Report; No. FHWA-RD-03-083; Federal Highway Administration: McLean, VA, USA, 2003.
- Fael, C.M.S.; Simarro-Grande, G.; Martín-Vide, J.-P.; Cardoso, A.H. Local scour at vertical-wall abutments under clear-water flow conditions. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Ballio, F.; Teruzzi, A.; Radice, A. Constriction effects in clear-water scour at abutments. J. Hydraul. Eng. 2009, 135, 140. [Google Scholar] [CrossRef]
- Tan, S.M.; Lim, S.Y.; Wei, M.X.; Cheng, N.S. Application of particle densimetric froude number for evaluating the maximum culvert scour depth. J. Irrig. Drain. Eng. 2020, 146, 04020020. [Google Scholar] [CrossRef]
- Breusers, H.N.C.; Nicollet, G.; Shen, H.W. Local scour around cylindrical piers. J. Hydraul. Res. 1977, 15, 211–252. [Google Scholar] [CrossRef]
- Simpson, R.L. Junction flows. Annu. Rev. Fluid Mech. 2001, 33, 415–443. [Google Scholar] [CrossRef]
- Unger, J.; Hager, W.H. Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluids 2007, 42, 1–19. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zang, Z. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coast. Eng. 2010, 57, 709–721. [Google Scholar] [CrossRef]
- Lee, S.O.; Sturm, T.W. Effect of Sediment Size Scaling on Physical Modeling of Bridge Pier Scour. J. Hydraul. Eng. 2009, 135, 793–802. [Google Scholar] [CrossRef]
Case | Constraint Condition | Length Scale |
---|---|---|
1 | b << h; b << B | |
2 | h << b; h << B | |
3 | b~h; b << B; h << B | |
4 | b~h~B | |
5 | b~h~B − b |
Author | Run | Flow Depth, h (cm) | Transverse Abutment Length, b (cm) | Channel Width, B (cm) | (cm) | Geometric Standard Deviation, | Average Flow Velocity, U (m/s) | Equilibrium Scour Depth, (cm) | b/B | b/h | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rajaratnam and Nwachukwu [15] | 1–6 | 10.7–15.4 | 15.2 | 91 | 0.14 | 1.3 * | 0.204–0.320 | 6.3–18.3 | 0.17 | 0.99–1.42 | 109 |
Lim [3] | S1–S11 | 10–15 | 5–15 | 60 | 0.094 | 1.25 | 0.181–0.325 | 3.6–25.0 | 0.08–0.25 | 0.33–1.00 | 53–160 |
Cardoso, Santos and Roca [16] | U1–U18 | 6.9–7.1 | 18–50 | 145 | 0.063 | 1.68 | 0.141–0.277 | 2.1–30.8 | 0.12–0.34 | 2.54–7.25 | 286–794 |
Molinas [17] | Set A | 2.8–15.2 | 2.5–10.2 | 61 | 0.18 | 2.07 | 0.19–0.42 | 0.5–8.3 | 0.04–0.17 | 0.24–2.62 | 14–57 |
Set B | 2.6–15.2 | 5.1–10.2 | 61 | 0.18 | 1.17 | 0.206–0.463 | 2–14.94 | 0.08–0.17 | 0.43–3.64 | 28–57 | |
Set C | 3.3–9.3 | 5.1–10.2 | 61 | 0.18 | 3.91 | 0.21–0.443 | 0.3–4.5 | 0.08–0.17 | 0.61–2.68 | 28–57 | |
Set G | 7.3–9.8 | 5.1–10.2 | 61 | 0.18 | 1.3 | 0.135–0.304 | 0.1–11.9 | 0.08–0.17 | 0.61–1.12 | 65–131 | |
Fael, Simarro-Grande, Martín-Vide and Cardoso [18] | S.1–S.31 | 5.1–7.2 | 64–186 | 400 | 0.128 | 1.46 | 0.123–0.385 | 6.7–42.6 | 0.16–0.47 | 8.89–36.47 | 617–1453 |
Ballio, Teruzzi and Radice [19] | A10–D51 | 9.0–18.3 | 5.0–20.5 | 15–193 | 0.19–0.5 | 1.3 | 0.45–0.72 | 13.4–47 | 0.1–0.51 | 0.54–2.07 | 10–108 |
Author | ||||||
---|---|---|---|---|---|---|
Rajaratnam and Nwachukwu [15] | 0.41–1.20 | 0.54–1.71 | 0.95–2.91 | 1.09–3.31 | 1.12–3.39 | 1.43–2.24 |
Lim [3] | 0.57–1.67 | 0.24–1.67 | 0.73–3.33 | 0.92–4.17 | 0.98–4.44 | 1.75–3.14 |
Cardoso, Santos and Roca [16] | 0.09–1.17 | 0.30–4.34 | 0.42–4.95 | 0.45–5.38 | 0.45–5.60 | 1.49–3.23 |
Molinas [17] | 0.01–2.30 | 0.01–3.06 | 0.21–4.50 | 0.02–4.87 | 0.03–4.93 | 0.75–2.74 |
Fael, Simarro-Grande, Martín-Vide and Cardoso [18] | 0.04–0.46 | 0.86–6.87 | 0.90–7.10 | 0.93–7.31 | 0.95–7.50 | 1.23–4.13 |
Ballio, Teruzzi and Radice [19] | 1.82–3.42 | 1.44–4.56 | 4.12–6.86 | 4.39–9.21 | 4.40–11.68 | 2.06–4.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Cheng, N.; Wei, M. Length Parameter for Scaling Abutment Scour Depth. Water 2020, 12, 3508. https://doi.org/10.3390/w12123508
Xu P, Cheng N, Wei M. Length Parameter for Scaling Abutment Scour Depth. Water. 2020; 12(12):3508. https://doi.org/10.3390/w12123508
Chicago/Turabian StyleXu, Puer, Niansheng Cheng, and Maoxing Wei. 2020. "Length Parameter for Scaling Abutment Scour Depth" Water 12, no. 12: 3508. https://doi.org/10.3390/w12123508
APA StyleXu, P., Cheng, N., & Wei, M. (2020). Length Parameter for Scaling Abutment Scour Depth. Water, 12(12), 3508. https://doi.org/10.3390/w12123508