Urban Water Pricing and Private Interests’ Lobbying in Small Rural Communities
Abstract
:1. Introduction
2. Why Might Prices Be Abnormally Low in Rural Areas? An Explanation within the Framework of Public Choice Theory
3. Empirical Strategy
3.1. Case Study
3.2. Methodology
3.2.1. Contingent Valuation, Protest Responses and Censoring
3.2.2. Econometric Specifications
3.3. Survey Design and Data Collection
4. Results
4.1. WTP Estimates
4.2. Selection Models and WTP Determinants
5. Discussion, Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, W.; Zou, S.; Chen, Y.; Nover, D.; Fang, G.; Wang, Y. Sustainable water management for cross-border resources: The Balkhash Lake Basin of Central Asia, 1931–2015. J. Clean. Prod. 2020, 263, 121614. [Google Scholar] [CrossRef]
- Duan, W.; Takara, K. Impacts of Climate and Human Activities on Water Re-sources and Quality: Integrated Regional Assessment; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Unnerstall, H. The principle of full cost recovery in the EU-water framework directive—Genesis and content. J. Environ. Law 2007, 19, 29–42. [Google Scholar] [CrossRef]
- European Environmental Agency. Assessment of Cost Recovery through Water Pricing; EEA Technical Report No 16/2013; European Environmental Agency: Copenhagen, Denmark, 2013.
- Reynaud, A. Assessing the impact of full cost recovery of water services on European households. Water Resour. Econ. 2016, 14, 65–78. [Google Scholar] [CrossRef]
- González-Gómez, F.; García-Rubio, M.A. Efficiency in the management of urban water services. What have we learned after four decades of research. Hacienda Publica Espanola. 2008, 185, 39–67. [Google Scholar]
- Walter, M.; Cullmann, A.; von Hirschhausen, C.; Wand, R.; Zschille, M. Quo vadis efficiency analysis of water distribution? A comparative literature review. Util. Policy 2009, 17, 225–232. [Google Scholar] [CrossRef]
- Witte, K.; Marques, R.C. Designing performance incentives, an international benchmark study in the water sector. Cent. Eur. J. Oper. Res. 2010, 18, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Cetrulo, T.B.; Marques, R.C.; Malheiros, T.F. An analytical review of the efficiency of water and sanitation utilities in developing countries. Water Res. 2019, 161, 372–380. [Google Scholar] [CrossRef]
- INE. Estadística del Padrón Continuo; National Statistics Institute: Madrid, Spain, 2019.
- International Water Association–IWA. International Statistics for Water; IWA: London, UK, 2016. [Google Scholar]
- Global Water Intelligence. The Global Water Tariff Survey 2018; Global Water Intelligence: Oxford, UK, 2018. [Google Scholar]
- García-Valiñas, M.A.; González-Gómez, F.; Picazo-Tadeo, A.J. Is the price of water for residential use related to provider ownership? Empirical evidence from Spain. Util. Policy 2013, 24, 59–69. [Google Scholar] [CrossRef]
- Mueller, D.C. Public Choice III; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Carson, R.T. Contingent valuation: A practical alternative when prices aren’t available. J. Econ. Perspect. 2012, 26, 27–42. [Google Scholar] [CrossRef] [Green Version]
- González-Gómez, F.; García-Rubio, M.A.; González-Martínez, J. Beyond the public–private controversy in urban water management in Spain. Util. Policy 2014, 31, 1–9. [Google Scholar] [CrossRef]
- AEAS. XIV Estudio Nacional de Suministro de Agua Potable y Saneamiento en España 2016; Spanish Association of Water Supply and Sanitation Services: Madrid, Spain, 2018. [Google Scholar]
- González-Gómez, F.; Picazo-Tadeo, A.J.; Guardiola, J. Why do local governments privatize the provision of water services? Empirical evidence from Spain. Public. Adm. 2011, 89, 471–492. [Google Scholar] [CrossRef]
- García-Rubio, M.; Ruiz-Villaverde, A.; González-Gómez, F. Urban water tariffs in Spain: What needs to be done? Water 2015, 7, 1456–1479. [Google Scholar] [CrossRef] [Green Version]
- Picazo-Tadeo, A.J.; González-Gómez, F.; Suárez-Varela, M. Electoral opportunism and water pricing with incomplete transfer of control rights. Local Gov. Stud. 2020, 46, 1015–1038. [Google Scholar] [CrossRef]
- González-Gómez, F.; García-Rubio, M.A. Prices and ownership in the water urban supply: A critical review. Urban Water J. 2018, 15, 259–268. [Google Scholar] [CrossRef]
- Stigler, G.J. The theory of economic regulation. Bell J. Econ. Manag. Sci. 1971, 2, 3–21. [Google Scholar] [CrossRef]
- Becker, G.S. Public policies, pressure groups, and dead weight costs. J. Public Econ. 1985, 28, 329–347. [Google Scholar] [CrossRef]
- Guillet, D. The politics of sustainable agriculture: The case of water-demand management in Spain. South Eur. Soc. Polit. 1997, 2, 97–117. [Google Scholar] [CrossRef]
- Calatrava, J.; García-Valiñas, M.; Garrido, A.; González-Gómez, F. Water pricing in Spain: Following the footsteps of somber climate change projections. In Water Pricing Experiences and Innovations; Springer: Cham, Switzerland, 2015; pp. 313–340. [Google Scholar]
- Toan, T.D. Water pricing policy and subsidies to irrigation: A review. Environ. Process. 2016, 3, 1081–1098. [Google Scholar] [CrossRef]
- Brändle, G. Consumo y cambio social en España: Evolución en el equipamiento doméstico (1983–2005). Rev. Esp. Investig. Sociol. 2007, 120, 75–114. [Google Scholar]
- González-Gómez, F.; García-Rubio, M.A.; Guardiola, J. Urban water service policies and management in Spain: Pending issues. Int. J. Water Resour. Dev. 2012, 28, 89–106. [Google Scholar] [CrossRef]
- Nordhaus, W.D. The political business cycle. Rev. Econ. Stud. 1975, 42, 169–190. [Google Scholar] [CrossRef]
- Agénor, P.R.; Asilis, C.M. Price controls and electoral cycles. Eur. J. Polit-Econ. 1997, 13, 131–142. [Google Scholar] [CrossRef]
- Özatay, F. Public sector price controls and electoral cycles. Appl. Econ. 2007, 39, 527–539. [Google Scholar] [CrossRef]
- Dubois, E. Political business cycles 40 years after Nordhaus. Public Choice 2016, 166, 235–259. [Google Scholar] [CrossRef] [Green Version]
- Felgendreher, S.; Lehmann, P. Public choice and urban water tariffs—Analytical framework and evidence from Peru. J. Environ. Dev. 2016, 25, 73–99. [Google Scholar] [CrossRef] [Green Version]
- Klien, M. Tariff increases over the electoral cycle: A question of size and salience. Eur. J. Polit. Econ. 2014, 36, 228–242. [Google Scholar] [CrossRef]
- Klien, M. The political side of public utilities: How opportunistic behaviour and yardstick competition shape water prices in Austria. Pap. Reg. Sci. 2015, 94, 869–890. [Google Scholar] [CrossRef]
- Klien, M. Corporatization and the behavior of public firms: How shifting control rights affects political interference in water prices. Rev. Ind. Organ. 2014, 44, 393–422. [Google Scholar] [CrossRef]
- Mandon, P.; Cazals, A. Political budget cycles: Manipulation by leaders versus manipulation by researchers? Evidence from a meta-regression analysis. J. Econ. Surv. 2019, 33, 274–308. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, R.J. Local government consolidations: The impact of political transaction costs. Public Choice 2006, 127, 75–95. [Google Scholar] [CrossRef]
- Peacock, A. The economics of bureaucracy: An inside view. In The Economics of Politics; Buchanan, J.M., Rowley, C.K., Breton, A., Wiseman, J., Frey, B., Peacock, A.T., Eds.; The Institute of Economic Affairs: West Sussex, UK, 1978. [Google Scholar]
- INE. Estadística Sobre el Suministro y Saneamiento del Agua; Año 2016; National Statistics Institute: Madrid, Spain, 2018.
- Rodríguez-Tapia, L.; Revollo-Fernández, D.A.; Morales-Novelo, J.A. Household’s perception of water quality and willingness to pay for clean water in Mexico City. Economies 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Byambadorj, A.; Lee, H.S. Household Willingness to Pay for Wastewater Treatment and Water Supply System Improvement in a Ger Area in Ulaanbaatar City, Mongolia. Water 2019, 11, 1856. [Google Scholar] [CrossRef] [Green Version]
- Gschwandtner, A.; Jang, C.; McManus, R. Improving Drinking Water Quality in South Korea: A Choice Experiment with Hypothetical Bias Treatments. Water 2020, 12, 2569. [Google Scholar] [CrossRef]
- Carson, R.T. Contingent valuation: A user’s guide. Environ. Sci. Technol. 2000, 34, 1413–1418. [Google Scholar] [CrossRef] [Green Version]
- Carson, R.T.; Mitchel, R.C.; Hanemann, W.M.; Kopp, R.J.; Presser, S.; Ruud, P.A. Contingent valuation and loss passive use: Damages from the Exxon Valdez oil spill. Environ. Resour. Econ. 2003, 25, 257–286. [Google Scholar] [CrossRef]
- Carson, R.T.; Flores, N.E.; Meade, N.F. Contingent Valuation: Controversies and Evidence. Environ. Resour. Econ. 2001, 19, 173–210. [Google Scholar] [CrossRef]
- Johnson, B.K.; Whitehead, J.C. Value of public goods from sports stadiums: The CVM approach. Contemp. Econ. Policy 2000, 18, 48–58. [Google Scholar] [CrossRef]
- Jorgensen, B.S.; Syme, G.J. Protest responses and willingness to pay: Attitude toward paying for storm water pollution abatement. Ecol. Econ. 2000, 33, 251–265. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Liebe, U. Protest beliefs in contingent valuation: Explaining their motivation. Ecol. Econ. 2006, 57, 583–594. [Google Scholar] [CrossRef]
- Lindsey, G. Market models, protest bids, and outliers in contingent valuation. J. Water Resour. Plan. Manag. 1994, 120, 121–129. [Google Scholar] [CrossRef]
- Jorgensen, B.S.; Syme, G.J.; Bishop, B.J.; Nancarrow, B.E. Protest responses in contingent valuation. Environ. Resour. Econ. 1999, 14, 131–150. [Google Scholar] [CrossRef]
- Szabo, Z. Reducing protest responses by deliberative monetary valuation: Improving the validity of biodiversity valuation. Ecol. Econ. 2011, 72, 37–44. [Google Scholar] [CrossRef]
- Soliño, M.; Prada, A.; Vázquez, M.X. Designing a forest-energy policy to reduce forest fires in Galicia (Spain): A contingent valuation application. J. Forest Econ. 2010, 16, 217–233. [Google Scholar] [CrossRef]
- Bonnichsen, O.; Olsen, S.B. Correcting for non-response bias in contingent valuation surveys concerning environmental nonmarket goods: An empirical investigation using an online panel. J. Environ. Plan. Manag. 2016, 59, 245–262. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- Van de Ven, W.P.; Van Praag, B.M. The demand for deductibles in private health insurance: A probit model with sample selection. J. Econ. 1981, 17, 229–252. [Google Scholar] [CrossRef]
- Ramajo-Hernández, J.; del Saz-Salazar, S. Estimating the non-market benefits of water quality improvement for a case study in Spain: A contingent valuation approach. Environ. Sci. Policy 2012, 22, 47–59. [Google Scholar] [CrossRef]
- del Saz-Salazar, S.; García-Rubio, M.A.; González-Gómez, F.; Picazo-Tadeo, A.J. Managing Water Resources Under Conditions of Scarcity: On Consumers’ Willingness to Pay for Improving Water Supply Infrastructure. Water Resour. Manag. 2016, 30, 1723–1738. [Google Scholar] [CrossRef]
- Boyle, K.J. Contingent Valuation in Practice. In A Primer on Nonmarket Valuation. The Economics of Non-Market Goods and Resources; Champ, P., Boyle, K., Brown, T., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 13. [Google Scholar]
- Champ, P.A. Collecting Nonmarket Valuation Data. In A Primer on Nonmarket Valuation. The Economics of Non-Market Goods and Resources; Champ, P., Boyle, K., Brown, T., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 13. [Google Scholar]
- Morgan, D.L. Focus groups. Annu. Rev. Sociol. 1996, 22, 129–152. [Google Scholar] [CrossRef]
- Poe, G.L.; Vossler, C.A. Consequentiality and Contingent Values: An Emerging Paradigm; Edward Elgar Publishing: Cheltenham, UK, 2011; pp. 122–141. [Google Scholar]
- Carson, R.T. Contingent valuation: Theoretical advances and empirical tests since the NOAA panel. Am. J. Agric. Econ. 1997, 79, 1501–1507. [Google Scholar] [CrossRef]
- Bishop, R.C.; Heberlein, T.A. Measuring values of extra-market goods: Are indirect measures biased? Am. J. Agric. Econ. 1979, 61, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA panel on contingent valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Kriström, B. Spike models in contingent valuation. Am. J. Agric. Econ. 1997, 79, 1013–1023. [Google Scholar] [CrossRef]
- Cooper, J.C. Optimal bid selection for dichotomous choice contingent valuation surveys. J. Environ. Econ. Manag. 1993, 24, 25–40. [Google Scholar] [CrossRef]
- Schläpfer, F. Contingent valuation: A new approach. Ecol. Econ. 2008, 64, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Herriges, J.A.; Shogren, J.F. Starting point bias in dichotomous choice valuation with follow-up questioning. J. Environ. Econ. Manag. 1996, 30, 112–131. [Google Scholar] [CrossRef]
- Green, D.; Jacowitz, K.E.; Kahneman, D.; Mcfadden, D. Referendum contingent valuation, anchoring, and willingness to pay for public goods. Resour. Energy Econ. 1998, 20, 85–116. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, M.; Alberini, A.; Cooper, J.C. Implications of Bid Design and Willingness-To-Pay Distribution for Starting Point Bias in Double-Bounded Dichotomous Choice Contingent Valuation Surveys. Environ. Resour. Econ. 2011, 49, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Dziegielewska, D.A.; Mendelsohn, R. Does no mean no? A protest methodology. Environ. Resour. Econ. 2007, 38, 71–87. [Google Scholar] [CrossRef]
- Lee, M.-K.; Yoo, S.-H. Public’s willingness to pay for a marina port in Korea: A contingent valuation study. Ocean Coast. Manag. 2016, 119, 119–127. [Google Scholar] [CrossRef]
- Carson, R.T. Constructed markets. In Measuring the Demand for Environmental Quality; Braden, J.B., Kolstad, C.D., Eds.; North-Holland/Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- del Saz-Salazar, S.; García-Menéndez, L. The nonmarket benefits of redeveloping dockland areas for recreational purposes: The case of Castellón, Spain. Environ. Plan A 2003, 35, 2115–2129. [Google Scholar] [CrossRef]
- Calia, P.; Strazzera, E. A sample selection model for protest responses in contingent valuation analysis. Statistica 2001, 61, 473–485. [Google Scholar]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Libro Verde de la Gobernanza del Agua en España; Gobierno de España: Madrid, Spain, 2020; Available online: https://www.miteco.gob.es/es/agua/temas/sistema-espaniol-gestion-agua/libro-verde-gobernanza-agua_tcm30-517206.pdf (accessed on 3 December 2020).
- García-Rubio, M.A.; González-Gómez, F. Informe Sobre el Ciclo Integral del Agua en Pequeños y Medianos Municipios; Ministerio para la Transición Ecológica y el Reto Demográfico, Gobierno de España: Madrid, Spain, 2020; Available online: https://www.miteco.gob.es/es/agua/temas/sistema-espaniol-gestion-agua/11-informe-tematico-ciclo-integral-pequenos-municipios_tcm30-517277.pdf (accessed on 3 December 2020).
- Keenan, S.P.; Krannich, R.S. The Social Context of Perceived Drought Vulnerability 1. Rural Sociol. 1997, 62, 69–88. [Google Scholar] [CrossRef]
- López-Ruiz, S.; Tortajada, C.; González-Gómez, F. Is the human right to water sufficiently protected in Spain? Affordability and governance concerns. Util. Policy 2020, 63, 101003. [Google Scholar] [CrossRef]
- Kayaga, S.; Sansom, K.; Godfrey, A.; Takahashi, I.; Van Rooijen, D. Towards sustainable urban water services in developing countries: Tariffs based on willingness-to-pay studies. Urban Water J. 2018, 15, 974–984. [Google Scholar] [CrossRef]
- Bengochea-Morancho, A.; Fuertes-Eugenio, A.M.; del Saz-Salazar, S. A Comparison of Empirical Models Used to Infer the Willingness to Pay in Contingent Valuation. Empir. Econ. 2005, 30, 235–244. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
INCOME | 1 if respondent’s income is equal or greater than €900, 0 otherwise. |
H_ECONCERN | 1 if the respondent is highly environmentally concerned, 0 otherwise. Highly environmental concerned means that the respondent, on a scale from 1 to 5 stated a value equal or greater than 4 when asked about his concern for the environment. |
EXPENSIVE | 1 if the respondent when asked about the price of water using a scale from 1 to 5 (1 = very cheap and 5 = very expensive) stated a value equal or greater than 4, 0 otherwise. |
TURBIDITY | Respondent’s perception of the turbidity of the water from the tap before the construction of the current treatment plant on a scale from 1 to 5 (1 = never; 5 = always). |
SMELL | Respondent’s perception of the smell of the water from the tap before the construction of the current treatment plant on a scale from 1 to 5 (1 = never; 5 = always). |
BAD_TASTE | Respondent’s perception about the bad taste of the water from the tap before the construction of the current treatment plant on a scale from 1 to 5 (1 = never; 5 = always). |
BOTTLED_W | 1 if the respondent states that she drinks bottled water, 0 otherwise. |
SATISFIED | 1 if the respondents, when asked about her satisfaction related to the quality of the water from the tap, stated a value > 5 on a scale from 0 to 10 (0 = totally dissatisfied; 10 = totally satisfied), 0 otherwise. |
WQ_CONCERN | Respondent’s level of concern about water quality on a scale from 1 to 5 (1 = not at all concerned; 10 = extremely concerned). |
CHILDREN | Number of children in the family unit |
INACTIVE | 1 if the respondent is economically inactive (student, pensioner and housewife), 0 otherwise. |
RIGHT_WING | 1 if the respondent has right-wing ideology, 0 otherwise. |
INVOLVE_AGR | 1 if the income of the interviewees depend directly on farming, 0 otherwise. |
Reason | Number (%) |
---|---|
True zero responses | |
I cannot afford to pay (income constraints) | 100 (21.4) |
Water quality is not the most important problem | 13 (2.8) |
Protest responses | |
The local government should fund the proposed improvement in water quality | 58 (12.4) |
It is my right to expect clean water without paying extra | 77 (16.4) |
Lack of trust in the local government, to much waste | 32 (6.8) |
All Responses (1) | Protest Responses (2) | (2)/(1) % | |
---|---|---|---|
Involved in agricultural industry | 293 | 104 | 35.49% |
Non involved in agricultural industry | 175 | 63 | 36.00% |
All the sample | 468 | 167 | 35.68% |
Including Protest Responses | Excluding Protest Responses | |||||||
---|---|---|---|---|---|---|---|---|
All the Sample | Involved in Agricultural Industry | All the Sample | Involved in Agricultural Industry | |||||
Probit | Spike | Probit | Spike | Probit | Spike | Probit | Spike | |
Constant a | 0.1912 (−1.30) | −0.8802 *** (−8.63) | −0.0848 (−0.47) | −0.8643 *** (−6.72) | 0.2387 (1.39) | −0.1679 (−1.44) | 0.4256 ** (1.98) | −0.1504 (−1.02) |
Bid (A) a | −0.0694 *** (−5.91) | 0.0733 *** (8.23) | −0.0690 *** (−4.91) | 0.0595 *** (6.06) | −0.0790 *** (−5.88) | 0.0863 *** (8.62) | −0.0829 *** (−5.06) | 0.0713 *** (6.33) |
Mean WTP (€) and 95% confidence interval b | −2.75 [−9.95–1.14] | 4.74 [3.46–6.00] | −1.23 [−10.02–2.97] | 5.90 [3.79–8.01] | 3.02 [−1.72–5.79] | 7.09 [5.36–8.83] | 5.13 [0.14–7.94] | 8.70 [5.87–11.51] |
Log likelihood | −182.9290 | −349.4914 | −125.1067 | −218.8886 | −147.2424 | −273.6019 | −97.822 | −171.001 |
LR chi2(1) c | 39.38 | 67.79 | 26.81 | 36.77 | 39.01 | 74.24 | 28.64 | 40.02 |
Prob > chi2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pseudo R2 | 0.098 | - | 0.097 | - | 0.117 | - | 0.128 | - |
N | 468 | 468 | 293 | 293 | 301 | 301 | 189 | 189 |
Variable | Selection Equation (Involve_Agr = 1) | Protest Equation (Protest = 1) |
---|---|---|
CONSTANT | 1.9564 *** (3.21) | −0.1539 (−0.23) |
INCOME | −0.7561 ** (−2.07) | −0.9891 ** (−2.39) |
INNACTIVE | −0.8023 (−1.93) * | −0.5131 (−1.19) |
RIGHT_WING | 0.8147 ** (2.25) | 0.7648 ** (2.31) |
CHILDREN | 0.2681 *** (3.56) | 0.1557 ** (2.18) |
H_ECONCERN | −0.8391 * (−1.74) | 0.2623 (0.25) |
EXPENSIVE | 0.6755 *** (2.45) | 0.4860 * (1.79) |
TURBIDITY | −0.3870 * (−1.73) | 0.1384 (0.69) |
SMELL | −0.0961 (−0.64) | 0.0020 (−0.01) |
BAD_TASTE | −0.1127 (−0.84) | −0.2514 * (−1.85) |
BOTTLED | −0.0746 (−0.31) | |
Number of observations | 156 | |
Log likelihood | −141.9109 | |
Wald Chi-squared (9) | 23.59 *** | |
LR test of indep. eqns. (r = 0) | ||
Chi-squared (1) | 2.2 |
Variable | Selection Equation (Do not Protest = 1) | Participation Equation (Enter = 1) |
---|---|---|
CONSTANT | −1.3347 * (−1.78) | −2.4004 ** (−2.11) |
INCOME | 0.7077 ** (2.32) | 0.2671 *** (3.09) |
RIGHT_WING | −0.6500 ** (−2.20) | |
H_ECONCERN | 0.5459 (1.37) | |
EXPENSIVE | −0.5005 ** (−2.20) | −0.4772 (−1.34) |
TURBIDITY | 0.0531 (0.33) | 0.7206 *** (3.32) |
SMELL | −0.0797 (−0.62) | −0.0449 (−0.29) |
BAD_TASTE | 0.1154 (0.96) | −0.2357 (−1.53) |
WQ_CONCERN | 0.0582 (0.67) | 0.1571 (1.48) |
SATISFIED | 0.0681 (0.29) | −0.8007 *** (−2.67) |
CRISIS | 0.2997 ** (2.35) | |
Number of observations | 207 | |
Log likelihood | −192.196 | |
Wald Chi-squared (8) | 26.77 *** | |
LR test of indep. eqns. (ρ = 0) | ||
Chi-squared (1) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil-Duarte, F.; González-Gómez, F.; del Saz-Salazar, S. Urban Water Pricing and Private Interests’ Lobbying in Small Rural Communities. Water 2020, 12, 3509. https://doi.org/10.3390/w12123509
Alguacil-Duarte F, González-Gómez F, del Saz-Salazar S. Urban Water Pricing and Private Interests’ Lobbying in Small Rural Communities. Water. 2020; 12(12):3509. https://doi.org/10.3390/w12123509
Chicago/Turabian StyleAlguacil-Duarte, Fernando, Francisco González-Gómez, and Salvador del Saz-Salazar. 2020. "Urban Water Pricing and Private Interests’ Lobbying in Small Rural Communities" Water 12, no. 12: 3509. https://doi.org/10.3390/w12123509
APA StyleAlguacil-Duarte, F., González-Gómez, F., & del Saz-Salazar, S. (2020). Urban Water Pricing and Private Interests’ Lobbying in Small Rural Communities. Water, 12(12), 3509. https://doi.org/10.3390/w12123509