Application of the Mesohabitat Simulation System (MesoHABSIM) for Assessing Impact of River Maintenance and Restoration Measures
Abstract
1. Introduction
2. Materials and Methods
2.1. Swider River
2.2. Hydromorphological and Habitat Assessment
2.3. Simulations
2.3.1. Maintanance Works
- -
- deepening of the riverbed and removal of the bottom substrate (alluvia from the bottom of the river) to a depth of 0.3–0.5 m;
- -
- deploying only sand (bottom substrate) along the entire section undergoing maintenance works;
- -
- increasing the capacity of the riverbed—removing all obstacles such as stones, branches, fallen trunks, islands;
- -
- increasing the width of the riverbed;
- -
- clearing and mowing the banks at a distance of 2 m from the riverbed (in order to widen the riverbed);
- -
- armoring the pool slope on eroded banks with riprap. Stone banks are used for the purpose of creating a sunken or partially exposed channel base or the bottom of the riverbed. It is then necessary to align the stone to the designed profile and fill the free spaces [35].
2.3.2. River Restoration
2.3.3. Ask the Fish (ATF) Scenario
2.3.4. Metrics Used
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Union Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:l28013 (accessed on 19 August 2020).
- European Union Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1597832816764&uri=CELEX:32000L0060 (accessed on 19 August 2020).
- European Environment Agency. European Waters—Assessment of Status and Pressures 2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Kolada, A.; Pasztaleniec, A.; Bielczyńska, A.; Ochocka, A.; Kutyła, S.; Izydorczyk, K.; Krauze, K.; Biernacki, M.; Zalewska, T.; Kraśniewski, W. Ocena Stanu Rzek, Jezior, Wód Przejściowych i Przybrzeżnych W Latach 2016–2018; Chief Inspectorate of Environmental Protection: Warsaw, Poland, 2019. [Google Scholar]
- Lewandowski, P. Polish Investigations on River Hydromorphology. Polish J. Environ. Stud. 2012, 21, 957–965. [Google Scholar]
- Hajdukiewicz, H.; Wyżga, B.; Zawiejska, J. Twentieth-century hydromorphological degradation of Polish Carpathian rivers. Quat. Int. 2019, 504, 181–194. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Grabowski, R.C.; Okruszko, T. Controls on anastomosis in lowland river systems: Towards process-based solutions to habitat conservation. Sci. Total Environ. 2017, 609, 1544–1555. [Google Scholar] [CrossRef] [PubMed]
- Pielech, R.; Kisiel, P. Prace Utrzymaniowe Jako Zagrożenie dla Osiągnięcia Środowiskowych Celów Ramowej Dyrektywy Wodnej Oraz dla Funkcjonowania Sieci Ekologicznej Natura 2000 w Polsce; WWF: Wrocław, Poland, 2010. [Google Scholar]
- Jabłońska, E.; Kotkowicz, M.; Manewicz, M.; Nawrocki, P.; Pawlaczyk, P. Podsumowanie i Interpretacja Wyników Raportu Inwentaryzacja oraz Ocena Skutków Przyrodniczych Ingerujących w Hydromorfologię rzek prac ‘Utrzymaniowych’ Wykonanych na Ciekach Województw Łódzkiego, Podkarpackiego, Podlaskiego, Małopolskiego, Mazowieckiego; WWF: Warsaw, Poland, 2014. [Google Scholar]
- Szałkiewicz, E.; Jusik, S.; Grygoruk, M. Status of and Perspectives on River Restoration in Europe: 310,000 Euros per Hectare of Restored River. Sustainability 2018, 10, 129. [Google Scholar] [CrossRef]
- Dz.U.2020.310. Prawo Wodne. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200000310 (accessed on 19 August 2020).
- Bączyk, A.; Wagner, M.; Okruszko, T.; Grygoruk, M. Influence of technical maintenance measures on ecological status of agricultural lowland rivers—Systematic review and implications for river management. Sci. Total Environ. 2018, 627, 189–199. [Google Scholar] [CrossRef]
- Żelazo, J.; Zbigniew, P. Podstawy Renaturyzacji Rzek, 2nd ed.; Warsaw University of Life Scienes Publishing House: Warsaw, Poland, 2014; ISBN 978-83-7583-573-1. [Google Scholar]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Belletti, B.; Nardi, L.; Rinaldi, M.; Poppe, M.; Brabec, K.; Bussettini, M.; Comiti, F.; Gielczewski, M.; Golfieri, B.; Hellsten, S.; et al. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches. Environ. Manag. 2018, 61, 69–84. [Google Scholar] [CrossRef]
- González, E.; Felipe-Lucia, M.R.; Bourgeois, B.; Boz, B.; Nilsson, C.; Palmer, G.; Sher, A.A. Integrative conservation of riparian zones. Biol. Conserv. 2017, 211, 20–29. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological restoration of streams and rivers: Shifting strategies and shifting goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Pimm, S.L. When does restoration succeed? In Ecological Assembly Rules: Perspectives, Advances, Retreats; Weiher, E., Keddy, P., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 363–392. ISBN 0-511-03299-4. [Google Scholar]
- Ward, J.V.; Tockner, K.; Uehlinger, U.; Malard, F. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Regul. Rivers Res. Manag. 2001, 17, 311–323. [Google Scholar] [CrossRef]
- Lüderitz, V.; Jüpner, R.; Müller, S.; Feld, C.K. Renaturalization of streams and rivers- the special importance of integrated ecological methods in measurement of success. An example from Saxony-Anhalt (Germany). Limnologica 2004, 34, 249–263. [Google Scholar] [CrossRef]
- Biedroń, I.; Dubel, A.; Grygoruk, M.; Pawlaczyk, P.; Prus, P.; Wybraniec, K. Katalog Dobrych Praktyk w Zakresie Robót Hydrotechnicznych i Prac Utrzymaniowych Wraz z Ustaleniem Zasad ich Wdrażania; MGGP: Kraków, Poland, 2018. [Google Scholar]
- Parasiewicz, P.; Nestler, J.M.; Poff, N.L.; Goodwin, R.A. Virtual Reference River: A Model for Scientific Discovery and Reconciliation; Ecological Management, Nova Science Publishers: New York, USA, 2011; ISBN 9781604567861. [Google Scholar]
- Pander, J.; Geist, J. The Contribution of Different Restored Habitats to Fish Diversity and Population Development in a Highly Modified River: A Case Study from the River Günz. Water 2018, 10, 1202. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø.; Szcześniak, M.; Szwed, M.; Benestad, R.E.; et al. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef]
- O’Keeffe, J.; Piniewski, M.; Szcześniak, M.; Oglęcki, P.; Parasiewicz, P.; Okruszko, T. Index-based analysis of climate change impact on streamflow conditions important for Northern Pike, Chub and Atlantic salmon. Fish. Manag. Ecol. 2019, 26, 474–485. [Google Scholar] [CrossRef]
- Parasiewicz, P. The MesoHABSIM model revisited. River Res. Appl. 2007, 23, 893–903. [Google Scholar] [CrossRef]
- Jagiełło, J. Jeziorka Świder Wilga Okrzejka oraz ich Dopływy; Interesting Places Publishing House: Warsaw, Poland, 2014; ISBN 9788363424312. [Google Scholar]
- Orłow-Gozdowska, Ł. Program Ochrony i Rozwoju Zasobów Wodnych Województwa Mazowieckiego w Zakresie Udrożnienia rzek dla ryb Dwuśrodowiskowych- Projekt; Marshal’s Office of Mazowieckie Province: Warsaw, Poland, 2005. [Google Scholar]
- Parasiewicz, P.; Rogers, J.N.; Vezza, P.; Gortázar, J.; Seager, T.; Pegg, M.; Wiśniewolski, W.; Comoglio, C. Applications of the MesoHABSIM Simulation Model. In Ecohydraulics; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 109–124. [Google Scholar]
- Parasiewicz, P. Using MesoHABSIM to develop reference habitat template and ecological management scenarios. River Res. Appl. 2007, 23, 924–932. [Google Scholar] [CrossRef]
- Suska, K. Ocena Wpływu prac Utrzymaniowych i Renaturyzacyjnych Rzeki Świder na Siedliska ryb z Wykorzystaniem Metody MesoHABSIM. Ph.D. Thesis, Warsaw University, Warsaw, Poland, 2015. [Google Scholar]
- Brylińska, M. Ryby Słodkowodne Polski, 3rd ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2000; ISBN 83-01131-00-4. [Google Scholar]
- Wołoszyn, J.; Czamara, W.; Eliasiewicz, R.; Krężel, J. Regulacja Rzek i Potoków; Akademia Rolnicza Wrocław: Wrocław, Poland, 1994; ISBN 83-85582-45-2. [Google Scholar]
- Novak, M.A.; Bode, R.W. Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. J. N. Am. Benthol. Soc. 1992, 11, 80–85. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Spurgeon, J.; Pegg, M.; Parasiewicz, P.; Rogers, J. River-Wide Habitat Availability for Fish Habitat Guilds: Implications for In-Stream Flow Protection. Water 2019, 11, 1132. [Google Scholar] [CrossRef]
- Nestler, J.M.; Pompeu, P.S.; Goodwin, R.A.; Smith, D.L.; Silva, L.G.M.; Baigún, C.R.M.; Oldani, N.O. The river machine: A Template for Fish Movement and Habitat, Fluvial Geomorphology, Fluid Dynamics and Biogeochemical Cycling. River Res. Appl. 2012, 28, 490–503. [Google Scholar] [CrossRef]
- Bain, M.B.; Meixler, M.S. A Target Fish Community to Guide River Restoration. River Res. Appl. 2008, 24, 453–458. [Google Scholar] [CrossRef]
Fish Guild | Species | Water Depth [m] * | Water Velocity [m/s] * | Type of Substrate ** | Hydromorphological Unit *** | Cover **** |
---|---|---|---|---|---|---|
rheophile sand and gravel | Lota Lota, Barbatula barbatula, Leuciscus leuciscus, Gobio gobio, Cobitis taenia | 0.2–2.5 | 0.1–0.7 | small (2–6 cm) and medium (6–20 cm) stones, sand, fine gravel | glide, run, backwater | shallows near the shore, submerged vegetation, woody debris, eroded banks |
associated with vegetation | Pungitius pungitius, Gasterosteus aculeatus, Leuciscus idus, Esox lucius | 0.2–2 | 0–0.5 | sand, silt, plant residues | glide, run, backwater | submerged vegetation, woody debris, eroded banks |
sand and silt bottom feeders | Abramis brama, Blicca bjoerkna | 0.2–4 | 0–0.5 | sand, silt | run, pool, backwater | submerged vegetation, woody debris, eroded banks |
generalists | Perca fluviatilis, Rutilus rutilus | 0.2–2 | 0–0.5 | sand, silt, fine gravel, plant residues | run, pool, glide, backwater | submerged vegetation, woody debris, eroded banks |
midwater | Alburnus alburnus | 0.5–4 | 0.1–0.7 | sand, mud, fine gravel | run, pool, backwater | none |
lamprey larvae | Lampetra planeri, Eudontomyzon mariae | 0.1–0.5 | 0.1–0.3 | sand, sludge, organic residues | run, pool, glide, backwater | shallows near the shore |
Hydromorphological Unit | Run | Pool |
---|---|---|
depth [m] | 0.5–1 | 0.7–1.3 |
width [m] | 15–18 | |
velocity (mean) [m/s] | 0.3–0.4 | 0.25–0.35 |
benthic substrate | sand | |
cover | - | stones |
Characteristics | Parameters | ||||
---|---|---|---|---|---|
Hydromorphological Unit | Run | Fast Run | Pool | Riffle | Backwater |
depth [m] | 0.6–0.9 | 0.5–1.1 | 0.5–1.5 | 0.2–0.5 | 0.05–0.5 |
width [m] | 15–18 | ||||
velocity (mean) [m/s] | 0.25–0.35 | 0.3–0.7 | 0.1–0.2 | 0.15–0.4 | 0 |
benthic substrate | sand | medium stones | silt | ||
cover | Shading |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suska, K.; Parasiewicz, P. Application of the Mesohabitat Simulation System (MesoHABSIM) for Assessing Impact of River Maintenance and Restoration Measures. Water 2020, 12, 3356. https://doi.org/10.3390/w12123356
Suska K, Parasiewicz P. Application of the Mesohabitat Simulation System (MesoHABSIM) for Assessing Impact of River Maintenance and Restoration Measures. Water. 2020; 12(12):3356. https://doi.org/10.3390/w12123356
Chicago/Turabian StyleSuska, Katarzyna, and Piotr Parasiewicz. 2020. "Application of the Mesohabitat Simulation System (MesoHABSIM) for Assessing Impact of River Maintenance and Restoration Measures" Water 12, no. 12: 3356. https://doi.org/10.3390/w12123356
APA StyleSuska, K., & Parasiewicz, P. (2020). Application of the Mesohabitat Simulation System (MesoHABSIM) for Assessing Impact of River Maintenance and Restoration Measures. Water, 12(12), 3356. https://doi.org/10.3390/w12123356