Submarine Groundwater Discharge (SGD) to Coastal Waters of Saipan (Commonwealth of the Northern Mariana Islands, USA): Implications for Nitrogen Sources, Transport and Ecological Effects
Abstract
:1. Introduction
1.1. Submarine Groundwater Discharge (SGD)
1.2. Study Area: Saipan
2. Methods
2.1. Sampling Locations and Strategy
2.2. In Situ Water Quality Measurements
2.3. Radon (Rn)
2.4. Radium (Ra) Isotopes
2.5. Nutrients
2.6. Nitrogen Isotopes
2.7. SGD Calculations
3. Results
3.1. Salinity
3.2. Temperature and pH
3.3. Radon
3.4. Radium (Ra)
3.5. Nutrients
3.6. Nitrogen and Oxygen Isotopes
3.7. Submarine Groundwater Discharge and Associated Nutrient Fluxes
4. Discussion
4.1. Hydrogeology
4.2. Quantitative Estimation of SGD and Nutrient Fluxes
4.3. SGD-Supported Primary Productivity
4.4. Nutrient Sources and Implications for Coastal Ecosystem Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burnett, W.C.; Aggarwal, K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef]
- Knee, K.L.; Paytan, A. Submarine Groundwater Discharge: A Source of Nutrients, Metals, and Pollutants to the Coastal Ocean. In Treatise on Estuarine and Coastal Science; Elsevier, Inc.: Amsterdam, The Netherlands, 2011; Chapter 4.08; pp. 205–233. [Google Scholar]
- Garrison, G.H.; Glenn, C.R.; McMurtry, M.G. Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai’i. Limnol. Oceanogr. 2003, 48, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M.; Ishitobi, T.; Seaki, K.-I. Evaluation of time-space distributions of submarine ground water discharge. Groundwater 2005, 43, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Knee, K.L.; Street, J.H.; Grossman, E.E.; Boehm, A.B.; Paytan, A. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, USA). Limnol. Oceanogr. 2010, 55, 1105–1122. [Google Scholar] [CrossRef] [Green Version]
- Crotwell, A.M.; Moore, W.S. Nutrient and Radium Fluxes from Submarine Groundwater Discharge to Port Royal Sound, South Carolina. Aquat. Geochem. 2003, 9, 191–208. [Google Scholar] [CrossRef]
- Burnett, W.C.; Watayakorn, G.; Taniguchi, M.; Dulaiova, H.; Sojisuporn, P.; Rungsupa, S.; Ishitobi, T. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Cont. Shelf Res. 2007, 27, 176–190. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.-S.; Hwang, D.-W. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnol. Oceanogr. 2011, 56, 673–682. [Google Scholar] [CrossRef]
- Knee, K.; Crook, E.; Hench, J.; Leichter, J.; Paytan, A. Assessment of Submarine Groundwater Discharge (SGD) as a Source of Dissolved Radium and Nutrients to Moorea (French Polynesia) Coastal Waters. Estuaries Coasts 2016, 39, 1651–1668. [Google Scholar] [CrossRef]
- Moore, W.S. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Mar. Chem. 2008, 109, 188–197. [Google Scholar] [CrossRef]
- Blanco, A.C.; Watanabe, A.; Nadaoka, K.; Motooka, S.; Herrera, E.C.; Yamamoto, T. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Mar. Pollut. Bull. 2011, 62, 770–785. [Google Scholar] [CrossRef]
- Tomascik, T.; Sander, F. Effects of eutrophication on reef-building corals II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mar. Biol. 1987, 94, 53–75. [Google Scholar] [CrossRef]
- Bell, P.R.F. Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Res. 1992, 26, 553–568. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Clark, M.W. Nutrient inputs from the watershed and coastal eutrophication in the Florida keys. Estuaries 1992, 15, 465–476. [Google Scholar] [CrossRef]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef] [PubMed]
- D′Angelo, C.; Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 2014, 7, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Burkholder, J.M.; Tomasko, D.A.; Touchette, B.W. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 2007, 350, 46–72. [Google Scholar] [CrossRef]
- Ralph, P.J.; Tomasko, D.; Seddon, S.; Moore, K.; MacInnis-Ng, C. Human impact on seagrasses: Contamination and eutrophication. In Seagrass Biology, Ecology and Conservation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 567–593. [Google Scholar]
- Schmidt, A.L.; Wysmyk, J.K.C.; Craig, S.E.; Lotze, H.K. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnol. Oceanogr. 2012, 57, 1389–1402. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Go, G.A.; Watanabe, A.; Miyajima, T.; Nakaoka, M.; Uy, W.H.; Nadaoka, K.; Watanabe, S.; Fortes, M.D. 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern Philippines. Mar. Pollut. Bull. 2014, 88, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology and Environmental Science; Wiley: Hoboken, NJ, USA, 2007; Volume 2, pp. 375–449. [Google Scholar]
- Pinkerton, K.; Baker, D.M.; Cuddy, M.R.; Raymundo, L.J.; Meyer, K.A.; Kim, K. Nitrogen dynamics on Guam as revealed by the seagrass Enhalus acoroides. Mar. Ecol. Prog. Ser. 2015, 528, 117–126. [Google Scholar] [CrossRef]
- Botrel, M.; Bristow, L.A.; Altabet, M.A.; Gregory-Eaves, I.; Maranger, R. Assimilation and nitrification in pelagic waters: Insights using dual nitrate stable isotopes (δ 15 N, δ 18 O) in a shallow lake. Biogeochemistry 2017, 135, 221–237. [Google Scholar] [CrossRef]
- Carruth, R.L. Ground-Water Resources of Saipan, Commonwealth of the Northern Mariana Islands; USGS: Reston, VA, USA, 2003.
- Perreault, J.A. Reconnaissance Study of the Hydrology of American Memorial Park, Island of Saipan, Commonwealth of the Northern Mariana Islands; USGS: Reston, VA, USA, 2007.
- Anonymous. 2017 Agricultural Census Northern Mariana Islands (2018) Commonwealth and Island Data. In Geographic Area Series; 2020. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Outlying_Areas/cnmi.pdf (accessed on 29 September 2020).
- Anonymous. Understanding the Population of the Commonwealth of the Northern Mariana Islands; Bureau, U.S.C., Ed.; 2020; p. 1. Available online: https://www.census.gov/history/pdf/sis_2020map_cnmi.pdf (accessed on 29 September 2020).
- Arriola, J.; Jonathan, A.; Rodney, C.; Derek, C.; Erin, D.; Jose, K.; Ryan, O.; Kathy, Y. Commonwealth of the Northern Mariana Islands 303(d), 305(b) and 314 Water Quality Assessment Integrated Report. B. o. E. a. C. Quality Ed.; CNMI: 2016; p. 144. Available online: http://www.deq.gov.mp/resources/files/branches/WQS/Final2016%20305b%20and%20303d%20Integrated%20Report.pdf (accessed on 29 September 2020).
- Kruger, J.; Kumar, S.; Damlamian, H.; Sharma, A. Oceanographic Survey, Shoreline Mapping and Preliminary Hydrodynamic Modeling Report, Saipan, Commonwealth of the Northern Mariana Islands. In SOPAC Data Release Report; Pacific Islands Applied Geoscience Commission: Suva, Fiji, 2010. [Google Scholar]
- Perez, D.I.; Phinn, S.R.; Roelfsema, C.M.; Shaw, E.; Johnston, L.; Iguel, J. Primary Production and Calcification Rates of Algae-Dominated Reef Flat and Seagrass Communities. J. Geophys. Res. Biogeosci. 2018, 123, 2362–2375. [Google Scholar] [CrossRef] [Green Version]
- Okano, D.; Okano, R. A Preliminary Investigation of Groundwater and Surface Water Impacts on Newarshore Biological Communities in Saipan Lagoon; CNMI Watershed Working Group: 2016; p. 27. Available online: https://dcrm.gov.mp/wp-content/uploads/crm/2016.7.20_WWG-meeting_OkanoOkano_SaipanLagoon.pdf (accessed on 29 September 2020).
- GDenton, R.W.; Emborski, C.A.; Habana, N.C.; Starmer, J.A. Influence of urban runoff, inappropriate waste disposal practices and World War II on the heavy metal status of sediments in the southern half of Saipan Lagoon, Saipan, CNMI. Mar. Pollut. Bull. 2014, 81, 276–281. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. The international system of units (SI) in oceanography. In UNESCO Technical Papers; UNESCO: Paris, France, 1985. [Google Scholar]
- Garcia-Solsona, E.; Garcia-Orellana, J.; Masqué, P.; Dulaiova, H. Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Mar. Chem. 2008, 109, 198–219. [Google Scholar] [CrossRef]
- Dimova, N.; Burnett, W.C.; Horwitz, E.P.; Lane-Smith, D. Automated measurement of 224Ra and 226Ra in water. Appl. Radiat. Isot. 2007, 65, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Young, M.B.; Gonneea, M.E.; Fong, D.A.; Moore, W.S.; Herrera-Silveira, J.; Paytan, A. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Mar. Chem. 2008, 109, 377–394. [Google Scholar] [CrossRef]
- USEPA. EPA 600/4-79-020 Methods for Chemical Analysis of Water and Wastes; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1983; p. 491. Available online: https://www.wbdg.org/FFC/EPA/EPACRIT/epa600_4_79_020.pdf (accessed on 29 September 2020).
- Solorzano, L. Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnol. Oceanogr. 1969, 14, 799–801. [Google Scholar]
- USEPA. EPA-NERL: 365.1: Phosphorus (All Forms) by Semi-Automated Colorimetry; USEPA: Washington, DC, USA, 1993.
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef]
- Casciotti, K.L.; Sigman, D.M.; Hastings, M.G.; Bohlke, J.K.; Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 2002, 74, 4905–4912. [Google Scholar] [CrossRef]
- Su, N.; Du, J.; Moore, W.S.; Liu, S.; Zhang, J. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Sci. Total Environ. 2011, 409, 3909–3918. [Google Scholar] [CrossRef]
- Kendall, M.S.; Costa, B.; McKagan, S.; Johnston, L.; Okano, D. Benthic Habitat Maps of Saipan Lagoon; NOAA: Silver Spring, MD, USA, 2017; p. 77. Available online: https://coastalscience.noaa.gov/data_reports/benthic-habitat-maps-of-saipan-lagoon-commonwealth-of-the-northern-mariana-islands-ncei-accession-0162517/ (accessed on 29 September 2020).
- Sanford, L.P.; Boicourt, W.C.; Rives, S.R. Model for estimating tidal flushing of small embayments. J. Waterw. Port Coast. Ocean Eng. 1992, 118, 635–654. [Google Scholar] [CrossRef]
- Moore, W. Determining coastal mixing rates using radium isotopes. Cont. Shelf Res. 2000, 20, 1993–2007. [Google Scholar] [CrossRef]
- Castro, F.; Houk, P.; Chambers, D.; Tanaka, C. Commonwealth of the Northern Mariana Islands Integrated 305(b) and 303(d) Water Quality Assessment Report; Division of Environmental Quality: 2006. Available online: http://www.deq.gov.mp/resources/files/branches/WQS/305b%202006%20Final.pdf (accessed on 29 September 2020).
- Hoffman, J.P.; Carruth, R.L.; Meyer, W. Geology, Ground-Water Occurrence, and Estimated Well Yields from the Mariana Limestone, Kagman Area, Saipan, CNMI.; Department of the Interior, US Geological Survey: Honolulu, HI, USA, 1998.
- NOAA. Station Data Inventory, Access & History, Saipan International Airport, US. In National Oceanographic and Atmospheric Administration National Centers for Environmental Information; NOAA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Matson, E.A. Nutrient flux through soils and aquifers to the coastal zone of Guam (Mariana Islands. Limnol. Oceanogr. 1993, 38, 361–371. [Google Scholar] [CrossRef]
- Johnson, A.G. A water-budget model and estimates of groundwater recharge for Guam. In U.S. Geological Survey Scientific Investigation Report; 2012; p. 53. Available online: https://pubs.usgs.gov/sir/2012/5028/pdf (accessed on 29 September 2020).
- Taniguchi, M.; Burnett, W.C.; Dulaiova, H.; Siringan, F.; Foronda, J.; Wattayakorn, G.; Rungsupa, S.; Kontar, E.A.; Ishitobi, T. Groundwater discharge as an important land-sea pathway into Manila Bay, Philippines. J. Coast. Res. 2008, 24, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Street, J.H.; Knee, K.L.; Grossman, E.E.; Paytan, A. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar. Chem. 2008, 109, 355–376. [Google Scholar] [CrossRef]
- Knee, K.; Layton, B.; Street, J.; Boehm, A.; Paytan, A. Sources of Nutrients and Fecal Indicator Bacteria to Nearshore Waters on the North Shore of Kaua’i (Hawai’i, USA). Estuaries Coasts 2008, 31, 607–622. [Google Scholar] [CrossRef] [Green Version]
- Sinigalliano, C.; Yuknavage, K.; Gidley, M.; Palacois, D.; Bautista, C.; Bonacolta, A.; Lee, H.W.; Knee, K.L.; Kim, K.; Maurin, L. Microbial Source Tracking of Fecal Indicating Bacteria in Coral Reef Waters, Recreational Waters, and Groundwater of Saipan by Real-Time Quantitative PCR. Front. Microbiol. 2020. in Review. [Google Scholar]
- Houk, P.; Woesik, R.V. Dynamics of shallow-water assemblages in the Saipan Lagoon. Mar. Ecol. Prog. Ser. 2008, 356, 39–50. [Google Scholar] [CrossRef]
Salinity | pH | N + N | NH4+ | PO43− | Rn | ||
---|---|---|---|---|---|---|---|
(mg N L−1) | (mg N L−1) | (µg L−1) | (Bq m−3) | ||||
SW | Western Shoreline-March | 37.0 (34.9–37.9) | n.m. | 0.14 (0.09–0.35) | 0.09 | 27 | 433 (20–4149) |
Western Shoreline-August | 31.7 (20.7–34.3) | 8.0 (7.8–8.3) | 0.09 | 0.11 (0.09–0.56) | 28 (27–56) | 1296 (51–7720) | |
Laolao Bay-March | 37.0 | n.m. | 0.11 (0.09–0.18) | 0.09 | 27 | n.m. | |
Laolao Bay-August | 33.6 (33.2–33.8) | 8.3 (8.2–8.5) | 0.09 | 0.09 | 35 (27–60) | n.m. | |
Reef-March | n.m. | n.m. | 0.09 | 0.09 | 27 | 39 (32–46) | |
Reef-August | n.m. | n.m. | 0.09 | 0.09 | 27 | n.m. | |
GW | Western Shoreline-March | 28.2 (2.4–37.8) | n.m. | 0.46 (0.09–1.34) | 0.15 (0.09–0.78) | 35 (27–76) | 304 (19–1175) |
Western Shoreline-August | 20.5 (1.6–33.6) | 7.6 (6.9–7.9) | 0.70 (0.09–6.57) | 0.11 (0.09–0.29) | 63 (27–630) | 386 (46–1735) | |
Laolao Bay-Mar | 37.2 | n.m. | 0.11 (0.09–0.18) | 0.09 | 27 | n.m. | |
Laolao Bay-August | n.m. | n.m. | 0.09 | 0.09 | 35 (27–60) | n.m. | |
Wells | 19.7 (4.3–37.3) | 7.5 (7.3–7.6) | 1.55 (0.09–4.29) | 0.12 (0.09–0.21) | 33 (27–60) | 2700 (771–5487) |
223Ra | 224Ra | 226Ra | 228Ra | |
---|---|---|---|---|
(dpm [100 L]−1) | ||||
Shoreline transects—March. | 2.4 (0.3–6.7) | 3.7 (1.4–9.5) | 14.4 (6.8–26.5) | 0.15 (0.08–0.23) |
Shoreline transects—August. | 1.9 (0.6–4.5) | 3.9 (1.4–8.9) | 59.6 (15.1–222) | 0.14 (0.06–0.37) |
Beach pits—August. | 2.0 (1.1–2.7) | 2.9 (0.0–5.6) | 8.1 (5.2–10.6) | 0.32 (0.17–0.59) |
Wells—March. and August. | 49.1 (6.6–209) | 50.9 (10.3–141) | 175 (14–499) | 1.57 (0.32–4.19) |
Species | March | August | |
---|---|---|---|
Caulerpa | 8.2 (5.1–11.6) | 6.6 (3.5–9.3) | |
Enhalus | 9.9 (4.6–16.4) | 5.9 (1.5–13.3) | |
Shoreline | Halimeda | 3.4 (0.3–8.7) | 2.8 (−2.2–13.8) |
Padina | 6.9 (1.1–11) | 3.7 (0.7–8.1) | |
Turbinaria | 4.4 (3.9–5.0) | 2.4 (1.8–2.7) | |
Caulerpa | 4.4 | n/a | |
Reef | Halimeda | 2.0 (1.2–2.6) | 0.7 (−1.9–2.4) |
Padina | 2.1 (1.1–2.6) | 1.4 (−0.4–2.0) | |
Turbinaria | 3.8 (3.7–3.9) | 2.2 (1.1–2.8) | |
Laolao | Padina | 3.0 (1.7–5.7) | 2.5 (0.8–4.9) |
Lagoon | Event | SGD (m3m−1Day−1) | SGD (m3Day−1) |
---|---|---|---|
Tanapag | March | 0.01–0.16 | 330–660 |
(S1–S14) | August | 0.02–0.57 | 3540–7080 |
Garapan | March | 0.06–10.9 | 11,360–22,720 |
(S15–S25) | August | 0.07–10.4 | 10,160–20,320 |
Chalan Kanaoa | March | 0.04–0.23 | 190–380 |
(S26–S29) | August | 0.04–0.30 | 250–500 |
Lagoon | Event | DIN | PO43− | N:P (Well Endmembers) | N:P (Surface Water) | Primary Productivity | |
---|---|---|---|---|---|---|---|
(mol N Day−1) | (mol P Day−1) | N Limited | P Limited | ||||
mol C Day−1 | mol C Day−1 | ||||||
Tanapag | March | 45–90 | 0.32–0.64 | 140 | 3.1–26.6 | 300–600 | 34–68 |
(S1–S14) | August | 480–960 | 3.4–6.9 | 140 | 4.6–15.3 | 3200–6400 | 360–730 |
Garapan | March | 1100–2200 | 14–29 | 78 | 4.3–44.7 | 7400–15,000 | 1500–3000 |
(S15–S25) | August | 1000–2000 | 13–26 | 78 | 1.0–10.0 | 6600–13,000 | 1400–2700 |
Chalan Kanaoa | March | 8.6–17 | 0.20–0.40 | 43 | 8.0–30.7 | 60–110 | 21–43 |
(S26–S29) | August | 11–23 | 0.26–0.52 | 43 | 0.7–3.5 | 80–150 | 27–56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapp, M.A.; Geeraert, N.; Kim, K.; Knee, K.L. Submarine Groundwater Discharge (SGD) to Coastal Waters of Saipan (Commonwealth of the Northern Mariana Islands, USA): Implications for Nitrogen Sources, Transport and Ecological Effects. Water 2020, 12, 3029. https://doi.org/10.3390/w12113029
Knapp MA, Geeraert N, Kim K, Knee KL. Submarine Groundwater Discharge (SGD) to Coastal Waters of Saipan (Commonwealth of the Northern Mariana Islands, USA): Implications for Nitrogen Sources, Transport and Ecological Effects. Water. 2020; 12(11):3029. https://doi.org/10.3390/w12113029
Chicago/Turabian StyleKnapp, Melissa A., Naomi Geeraert, Kiho Kim, and Karen L. Knee. 2020. "Submarine Groundwater Discharge (SGD) to Coastal Waters of Saipan (Commonwealth of the Northern Mariana Islands, USA): Implications for Nitrogen Sources, Transport and Ecological Effects" Water 12, no. 11: 3029. https://doi.org/10.3390/w12113029
APA StyleKnapp, M. A., Geeraert, N., Kim, K., & Knee, K. L. (2020). Submarine Groundwater Discharge (SGD) to Coastal Waters of Saipan (Commonwealth of the Northern Mariana Islands, USA): Implications for Nitrogen Sources, Transport and Ecological Effects. Water, 12(11), 3029. https://doi.org/10.3390/w12113029