Conceptualization and Prototype of an Anti-Erosion Sensing Revetment for Levee Monitoring: Experimental Tests and Numerical Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stress Analysis
2.2. Methodological Objectives of the Work
2.3. Experimental Tests
2.4. Numerical Model
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EUCOLD Working Group on Levees and Flood Defences. European and US Levees and Flood Defences Characteristics, Risks and Governance; EUCOLD Working Group on Levees and Flood Defences. 2018. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5sLu45NbsAhXTLqYKHensDT0QFjAAegQIAxAC&url=http%3A%2F%2Fwww.barrages-cfbr.eu%2FIMG%2Fpdf%2Flfd_inventory_of_characteristics_risks_and_governance_full_report_final_20190308.pdf&usg=AOvVaw0Ked-2PgRoMFse9JuzofhN (accessed on 28 October 2020).
- Hughes, S.A.; Nadal, N.C. Laboratory study of combined wave overtopping and storm surge overflow of a levee. Coast. Eng. 2009, 56, 244–259. [Google Scholar] [CrossRef]
- Orlandini, S.; Moretti, G.; Albertson, J.D. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy. Water Resour. Res. 2015, 51, 7995–8011. [Google Scholar] [CrossRef] [Green Version]
- Abbott, E.B. Review of disaster: Hurricane Katrina and the failure of homeland security. J. Homel. Secur. Emerg. Manag. 2007, 4. [Google Scholar] [CrossRef]
- Onuma, A.; Tsuge, T. Comparing green infrastructure as ecosystem-based disaster risk reduction with gray infrastructure in terms of costs and benefits under uncertainty: A theoretical approach. Int. J. Disaster Risk Reduct. 2018, 32, 22–28. [Google Scholar] [CrossRef]
- Tung, Y.K.; Mays, L.W. Risk models for flood levee design. Water Resour. Res. 1981, 17, 833–841. [Google Scholar] [CrossRef]
- Montz, B.E.; Tobin, G.A. Livin’large with levees: Lessons learned and lost. Nat. Hazards Rev. 2008, 9, 150–157. [Google Scholar] [CrossRef]
- Ojha, C.S.P.; Singh, V.P.; Adrian, D.D. Determination of critical head in soil piping. J. Hydraul. Eng. 2003, 129, 511–518. [Google Scholar] [CrossRef]
- Briaud, J.-L.; Chen, H.-C.; Govindasamy, A.V.; Storesund, R. Levee erosion by overtopping in New Orleans during the Katrina Hurricane. J. Geotech. Geoenviron. Eng. 2008, 134, 618–632. [Google Scholar] [CrossRef]
- Harteveld, C.; Guimarães, R.; Mayer, I.S.; Bidarra, R. Balancing play, meaning and reality: The design philosophy of levee patroller. Simul. Gaming 2010, 41, 316–340. [Google Scholar] [CrossRef] [Green Version]
- Hopman, V.; Kruiver, P.; Koelewijn, A.; Peters, T. How to create a smart levee. In Proceedings of the 8th International Symposium on Field Measurements in GeoMechanics, Berlin, Germany, 12–16 September 2011; pp. 12–16. [Google Scholar]
- de Vries, G.; Koelewijn, A.R.; Hopman, V.I. Jkdijk Full Scale Underseepage Erosion (Piping) Test: Evaluation of Innovative Sensor Technology. Scour Eros. 2010, 649–657. [Google Scholar] [CrossRef]
- Sekuła, K.; Borecka, A.; Kessler, D.; Majerski, P. Smart levee in Poland. Full-scale monitoring experimental study of levees by different methods. Comput. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Bertulessi, M.; Bianchini, P.; Boschini, I.; Chiarini, A.; Ferrario, M.; Mazzon, N.; Menduni, G.; Morosi, J.; Zambrini, F. Conceptualization of an anti-erosion sensing revetment for levee monitoring: Experimental tests and numerical modelling. EGU General Assembly Conference Abstracts. 2020. Available online: https://ui.adsabs.harvard.edu/abs/2020EGUGA..2222495B/abstract (accessed on 28 October 2020).
- Li, H.-N.; Ren, L.; Jia, Z.-G.; Yi, T.-H.; Li, D.-S. State-of-the-art in structural health monitoring of large and complex civil infrastructures. J. Civ. Struct. Health Monit. 2016, 6, 3–16. [Google Scholar] [CrossRef]
- Horizon 2020—Work Programme 2014–2015, General Annexes. Technology Readiness Levels (TRL), Extract from Part 19—Commission Decision C. 2014, p. 4995. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi33_Oq5dbsAhWCNaYKHf7vAtMQFjAAegQIARAC&url=http%3A%2F%2Fec.europa.eu%2Fresearch%2Fhorizon2020%2Fpdf%2Fwork-programmes%2Fgeneral_annexes_draft_work_programme.pdf&usg=AOvVaw085cfUj4JAeagGVm1RIJ5V (accessed on 28 October 2020).
- Serafinska, A.; Özenç, K.; Kaliske, M. A coupled approach of optimization, uncertainty analysis and configurational mechanics for a fail-safe design of structures. Int. J. Numer. Methods Eng. 2017, 109, 125–152. [Google Scholar] [CrossRef]
- Ralston, D.C. Mechanics of Embankment Erosion During Overflow. In Hydraulic Engineering; ASCE: Reston, VA, USA, 1987; pp. 733–738. [Google Scholar]
- Powledge, G.R.; Ralston, D.C.; Miller, P.; Chen, Y.H.; Clopper, P.E.; Temple, D.M. Mechanics of overflow erosion on embankments. II: Hydraulic and design considerations. J. Hydraul. Eng. 1989, 115, 1056–1075. [Google Scholar]
- Hanson, G.J.; Cook, K.R.; Hunt, S.L. Physical modeling of overtopping erosion and breach formation of cohesive embankments. Trans. ASAE 2005, 48, 1783–1794. [Google Scholar] [CrossRef]
- Schuttrumpf, H.; Oumeraci, H. Layer thicknesses and velocities of wave overtopping flow at seadikes. Coast. Eng. 2005, 52, 473–495. [Google Scholar] [CrossRef]
- Li, L.; Amini, F.; Pan, Y.; Yuan, S.; Cetin, B. Hydraulics of Levee Overtopping; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Straub, L.G.; Anderson, A.G. Experiments on self-aerated flow in open channels. J. Hydraul. Div. 1958, 84, 1–35. [Google Scholar]
- Wood, I.R. Uniform region of self-aerated flow. J. Hydraul. Eng. 1983, 109, 447–461. [Google Scholar] [CrossRef]
- Agostini, R.; Conte, A.; Malaguti, G.; Papetti, A. Flexible Linings in Reno Mattress and Gabions for Canals and Canalized Water Courses; Maccaferri Main Head Office: Bologna, ltaly, 1985. [Google Scholar]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Zadok, A.; Antman, Y.; Primerov, N.; Denisov, A.; Sancho, J.; Thevenaz, L. Random-access distributed fiber sensing. Laser Photonics Rev. 2012, 6, L1–L5. [Google Scholar] [CrossRef]
- Morosi, J.; Ferrario, M.; Boffi, P.; Martinelli, M. Double slope-assisted Brillouin optical correlation domain analysis. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017. [Google Scholar]
- Bertrand, D.; Nicot, F.; Gotteland, P.; Lambert, S. Discrete element method (DEM) numerical modeling of double-twisted hexagonal mesh. Can. Geotech. J. 2008, 45, 1104–1117. [Google Scholar] [CrossRef]
- Thoeni, K.; Lambert, C.; Giacomini, A.; Sloan, S.W. Discrete modelling of hexagonal wire meshes with a stochastically distorted contact model. Comput. Geotech. 2013, 49, 158–169. [Google Scholar] [CrossRef]
- Pol, A.; Gabrieli, F.; Thoeni, K.; Mazzon, N.; Corominas, J.; Moya, J.; Janeras, M. Discrete element modelling of punch tests with a double-twist hexagonal wire mesh. In Proceedings of the 6th Interdisciplinary Workshop on Rockfall Protection, Barcelona, Spain, 22–24 May 2017. [Google Scholar]
- Simons, D.B.; Chen, Y.H.; Swnson, L.J. Hydraulic Test to Develop Design Criteria for the Use of Reno Mattresses. In Report for Maccaferri (1984); Colorado State University: Fort Collins, CO, USA, 1984. [Google Scholar]
Loading Step | Load (N) |
---|---|
1 | 10 |
2 | 20 |
3 | 40 |
4 | 80 |
5 | 160 |
Loading Step | Load (N) |
---|---|
1 | 50 |
2 | 80 |
3 | 100 |
4 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertulessi, M.; Bignami, D.F.; Boschini, I.; Chiarini, A.; Ferrario, M.; Mazzon, N.; Menduni, G.; Morosi, J.; Zambrini, F. Conceptualization and Prototype of an Anti-Erosion Sensing Revetment for Levee Monitoring: Experimental Tests and Numerical Modeling. Water 2020, 12, 3025. https://doi.org/10.3390/w12113025
Bertulessi M, Bignami DF, Boschini I, Chiarini A, Ferrario M, Mazzon N, Menduni G, Morosi J, Zambrini F. Conceptualization and Prototype of an Anti-Erosion Sensing Revetment for Levee Monitoring: Experimental Tests and Numerical Modeling. Water. 2020; 12(11):3025. https://doi.org/10.3390/w12113025
Chicago/Turabian StyleBertulessi, Manuel, Daniele F. Bignami, Ilaria Boschini, Andrea Chiarini, Maddalena Ferrario, Nicola Mazzon, Giovanni Menduni, Jacopo Morosi, and Federica Zambrini. 2020. "Conceptualization and Prototype of an Anti-Erosion Sensing Revetment for Levee Monitoring: Experimental Tests and Numerical Modeling" Water 12, no. 11: 3025. https://doi.org/10.3390/w12113025
APA StyleBertulessi, M., Bignami, D. F., Boschini, I., Chiarini, A., Ferrario, M., Mazzon, N., Menduni, G., Morosi, J., & Zambrini, F. (2020). Conceptualization and Prototype of an Anti-Erosion Sensing Revetment for Levee Monitoring: Experimental Tests and Numerical Modeling. Water, 12(11), 3025. https://doi.org/10.3390/w12113025