Modified Hiltner Dew Balance to Re-Estimate Dewfall Accumulation as a Reliable Water Source in the Negev Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hiltner Dew Balance
- The time of the initial increase in balance weight (20% of initial weight);
- The maximum weight change recorded as Dm (dew at maximum);
- The time of the peak balance weight;
- The time of the decline in balance weight as a measure of the duration end (when sun radiation heats the surface plate, usually not later than 09:00 a.m.).
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ben-Asher, J.; Alpert, P.; Ben-Zvi, A. Dew is a major factor affecting vegetation water use efficiency rather than a source of water in the eastern Mediterranean area. Water Resour. Res. 2010, 46, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Uclés, O.; Villagarcía, L.; Moro, M.J.; Canton, Y.; Domingo, F. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem. Hydrol. Process. 2014, 28, 2271–2280. [Google Scholar] [CrossRef]
- Pan, Y.X.; Wang, X.P.; Zhang, Y.F. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China. J. Hydrol. 2010, 387, 265–272. [Google Scholar] [CrossRef]
- Kidron, G.J.; Starinsky, A. Measurements and ecological implications of non-rainfall water in desert ecosystems—A review. Ecohydrology 2019. [Google Scholar] [CrossRef]
- Kaseke, K.F.; Wang, L.; Seely, M.K. Nonrainfall water origins and formation mechanisms. Sci. Adv. 2017, 3, e1603131. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Ruddell, B.L.; Reed, P.M.; Hook, R.I.; Zheng, C.; Tidwell, V.C.; Siebert, S. The food-energy-water nexus: Transforming science for society. Water Resour. Res. 2017, 53, 3550–3556. [Google Scholar] [CrossRef]
- Malek, E.; McCurdy, G.; Giles, B. Dew contribution to the annual water balances in semi-arid desert valleys. J. Arid Environ. 1999, 42, 71–80. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.; Abou Najm, M.; Beysens, D.; Alameddine, I.; El-Fadel, M. Dew as a sustainable non-conventional water resource: A critical review. Environ. Rev. 2015, 23, 425–442. [Google Scholar] [CrossRef]
- Agam, N.; Berliner, P.R. Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid Environ. 2006, 64, 572–590. [Google Scholar] [CrossRef]
- Atashi, N.; Rahimi, D.; Al Kuisi, M.; Jiries, A.; Vuollekoski, H.; Kulmala, M.; Vesala, T.; Hussein, T. Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change. Water 2020, 12, 2186. [Google Scholar] [CrossRef]
- Jacobs, A.F.; Heusinkveld, B.G.; Berkowicz, S.M. A simple model for potential dewfall in an arid region. Atmos. Res. 2002, 64, 285–295. [Google Scholar] [CrossRef]
- Heusinkveld, B.G.; Berkowicz, S.M.; Jacobs, A.F.G.; Holtslag, A.A.M.; Hillen, W.C.A.M.; Heusinkveld, B.G.; Berkowicz, S.M.; Jacobs, A.F.G.; Holtslag, A.A.M.; Hillen, W.C.A.M. An Automated Microlysimeter to Study Dew Formation and Evaporation in Arid and Semiarid Regions. J. Hydrometeorol. 2006, 7, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Kaseke, K.F.; Tian, C.; Wang, L.; Seely, M.; Vogt, R.; Wassenaar, T.; Mushi, R. Fog Spatial Distributions over the Central Namib Desert—An Isotope Approach. Aerosol Air Qual. Res. 2018, 18, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Airey, P.L. Stable water isotopes in the atmosphere/biosphere/lithosphere interface: Scaling-up from the local to continental scale, under humid and dry conditions. Glob. Planet. Chang. 2006, 51, 25–33. [Google Scholar] [CrossRef]
- Noffsinger, T.L. Survey of techniques for measuring dew. In Humidity and Moisture; Reinhold: New York, NY, USA, 1965; Volume II, pp. 523–531. [Google Scholar]
- Zhuang, Y.; Zhao, W. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China. Agric. For. Meteorol. 2017, 247, 541–550. [Google Scholar] [CrossRef]
- Karpenko, V. Amount of dew in the ussr, according to a dew recorder. Sov. Hydrol. 1972, 3, 260–263. [Google Scholar]
- Ninari, N.; Berliner, P.R. The role of dew in the water and heat balance of bare loess soil in the Negev Desert: Quantifying the actual dew deposition on the soil surface. Atmos. Res. 2002, 64, 323–334. [Google Scholar] [CrossRef]
- Duvdevani, S. An optical method of dew estimation. Q. J. R. Meteorol. Soc. 1947, 73, 282–296. [Google Scholar] [CrossRef]
- Gilead, M.; Rosenan, N. Ten Years of Dew Observation in Israel. Isr. Explor. J. 1954, 4, 120–123. [Google Scholar]
- Evenari, M.; Shanan, L.; Tadmor, N. The Negev: The Challenge of a Desert; Oxford University Press: Oxford, UK, 1971. [Google Scholar]
- Zangvil, A. Six years of dew observations in the Negev Desert, Israel. J. Arid Environ. 1996, 32, 361–371. [Google Scholar] [CrossRef]
- Kidron, G.J. Altitude dependent dew and fog in the Negev Desert, Israel. Agric. For. Meteorol. 1999, 96, 1–8. [Google Scholar] [CrossRef]
- Kidron, G.J.; Herrnstadt, I.; Barzilay, E. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ. 2002, 52, 517–533. [Google Scholar] [CrossRef]
- Hill, A.J.; Dawson, T.E.; Shelef, O.; Rachmilevitch, S. The role of dew in Negev Desert plants. Oecologia 2015, 178, 317–327. [Google Scholar] [CrossRef]
- Dody, A.; Ziv, B. Factors affecting isotopic composition of the rainwater in the Negev Desert, Israel. J. Geophys. Res. Atmos. 2013, 118, 8274–8284. [Google Scholar] [CrossRef]
- Zangvil, A.; Druian, P. Measurements of dew at a desert site in southern Israel. Geogr. Res. Forum 1980, 2, 26–34. [Google Scholar]
- Vogel, S.; Müller-Doblies, U. Desert geophytes under dew and fog: The “curly-whirlies” of Namaqualand (South Africa). Flora Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 3–31. [Google Scholar] [CrossRef]
- Monteith, J.L. The reflection of short-wave radiation by vegetation. Q. J. R. Meteorol. Soc. 1959, 85, 386–392. [Google Scholar] [CrossRef]
- Baier, W. Studies on dew formation under semi-arid conditions. Agric. Meteorol. 1966, 3, 103–112. [Google Scholar] [CrossRef]
- Kidron, G.J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 2005, 301, 66–74. [Google Scholar] [CrossRef]
- Guo, X.; Zha, T.; Jia, X.; Wu, B.; Feng, W.; Xie, J.; Gong, J.; Zhang, Y.; Peltola, H. Dynamics of Dew in a Cold Desert-Shrub Ecosystem and Its Abiotic Controls. Atmosphere 2016, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Yair, A. Complex geo-ecological responses to climatic changes in a dryland area: Northern Negev desert; Israel. AGUFM 2009, 2009, H24B-05. [Google Scholar]
- Shanan, L.; Evenari, M.; Tadmor, N.H. Rainfall patterns in the central Negev desert. Isr. Explor. J. 1967, 17, 163–184. [Google Scholar]
- Kidron, G.J.; Starinsky, A. Chemical composition of dew and rain in an extreme desert (Negev): Cobbles serve as sink for nutrients. J. Hydrol. 2012, 420–421, 284–291. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Matzke, N.J.; Dawson, T.E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 2013, 16, 307–314. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Lehmann, M.M.; Cernusak, L.A.; Arend, M.; Siegwolf, R.T.W. Inferring foliar water uptake using stable isotopes of water. Oecologia 2017, 184, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Dawson, T.E.; Goldsmith, G.R. The value of wet leaves. New Phytol. 2018, 219, 1156–1169. [Google Scholar] [CrossRef] [Green Version]
- Berry, Z.C.; Emery, N.C.; Gotsch, S.G.; Goldsmith, G.R. Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant Cell Environ. 2019, 42, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Adar, E.M.; Dody, A.; Geyh, M.A.; Yair, A.; Yakirevich, A.; Issar, A.S. Distribution of stable isotopes in arid storms. Hydrogeol. J. 1998, 6, 50–65. [Google Scholar] [CrossRef]
- Giustini, F.; Brilli, M.; Patera, A. Mapping oxygen stable isotopes of precipitation in Italy. J. Hydrol. Reg. Stud. 2016, 8, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Atkin, O.K.; Bloomfield, K.J.; Reich, P.B.; Tjoelker, M.G.; Asner, G.P.; Bonal, D.; Bönisch, G.; Bradford, M.G.; Cernusak, L.A.; Cosio, E.G.; et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 2015, 206, 614–636. [Google Scholar] [CrossRef] [Green Version]
Environmental Factors | Average ± SD |
---|---|
Humidity (%) | 69.88 ± 0.12 |
Min. Temp (°C) | 15.38 ± 0.008 |
Max. Temp (°C) | 29.91 ± 1.83 |
Evaporation (mm/day) | 8.66 ± 0.41 |
Dew amount (mm/day) | 0.08 ± 0.001 |
Rainfall/year (mm) | 126.51 ± 4.53 |
Isotope value (δ18O) | −1.98 ± 0.12 |
Wind speed (m/s) | 7.15 ± 1.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, A.J.; Lincoln, N.K.; Rachmilevitch, S.; Shelef, O. Modified Hiltner Dew Balance to Re-Estimate Dewfall Accumulation as a Reliable Water Source in the Negev Desert. Water 2020, 12, 2952. https://doi.org/10.3390/w12102952
Hill AJ, Lincoln NK, Rachmilevitch S, Shelef O. Modified Hiltner Dew Balance to Re-Estimate Dewfall Accumulation as a Reliable Water Source in the Negev Desert. Water. 2020; 12(10):2952. https://doi.org/10.3390/w12102952
Chicago/Turabian StyleHill, Amber J., Noa Kekuewa Lincoln, Shimon Rachmilevitch, and Oren Shelef. 2020. "Modified Hiltner Dew Balance to Re-Estimate Dewfall Accumulation as a Reliable Water Source in the Negev Desert" Water 12, no. 10: 2952. https://doi.org/10.3390/w12102952