General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. NWM Background
2.2. Reconstructed Total Inflow Observations
2.3. Analysis Methods
2.3.1. Reservoir Selection
2.3.2. Reservoir Characterization
2.3.3. NWM Inflow Assessment
3. Results
3.1. Retrospective Analyses
3.2. Forecast Assessment
3.3. Combined Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ARMA/ARIMA | Auto-regressive (Integrated) Moving Average |
AWS | Access2Water |
ber | Lake Berriessa and Monticello Dam |
BoR | Bureau of Reclamation |
CFS | Climate Forecast System |
CONUS | Continental United States |
CWMS | Corps Water Management System |
echoreservoir | Echo Reservoir |
elephantbuttedam | Elephant Butte Dam |
GFS | Global Forecast System |
HRRR | High−Resolution Rapid Refresh |
lvks | Lovewell Dam |
navajo | Navajo Reservoir |
NCEP | National Centers for Environmental Prediction |
NHD | National Hydrography Dataset |
NID | National Inventory of Dams |
NLDAS−2 | National Land Data Assimilation System |
NOAA | National Oceanic Atmospheric Administration |
NSE | Nash–Sutcliffe Efficiency |
NWM | National Water Model |
ptr | Pactola Reservoir |
r | Pearson’s correlation coefficient |
relBias | Relative Bias |
RFC | River Forecast Center |
RISE | Reclamation Information Sharing Environment |
sher | Lake Sherburne |
USGS | United States Geological Survey |
WFO | Weather Forecast Office |
WRF | Weather Research Forecast |
Appendix A
References
- Turner, S.W.D.; Bennett, J.C.; Robertson, D.E.; Galelli, S. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations. Hydrol. Earth Syst. Sci. 2017, 21, 4841–4859. [Google Scholar] [CrossRef] [Green Version]
- Georgakakos, K.P.; Graham, N.E. Potential benefits of seasonal inflow prediction uncertainty for reservoir release decisions. J. Appl. Meteorol. Clim. 2008, 47, 1297–1321. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, D.; Cai, X.; Zhao, J.; Wang, H. Identifying effective forecast horizon for real-time reservoir operation under a limited inflow forecast. Water Resour. Res. 2012, 48, 2012. [Google Scholar] [CrossRef]
- Pretto, P.B.; Chiew, F.H.S.; McMahon, T.A.; Vogel, R.M.; Stedinger, J.R. The (mis)behavior of behavior analysis storage estimates. Water Resour. Res. 1997, 33, 703–709. [Google Scholar] [CrossRef]
- Rippl, W. The capacity of storage-reservoirs for water-supply (including plate). Minutes Proc. Inst. Civ. Eng. 1883, 71, 270–278. [Google Scholar]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Sivapalan, M. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Process. 2003, 17, 3163–3170. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Liu, P.; Liu, Y.; Wu, Z.; Wang, D. Integrated hydrologic and reservoir routing model for real-time water level forecasts. J. Hydrol. Eng. 2015, 20. [Google Scholar] [CrossRef]
- Deng, C.; Liu, P.; Guo, S.; Wang, H.; Wang, D. Estimation of nonfluctuating reservoir inflow from water level observations using methods based on flow continuity. J. Hydrol. 2019, 529, 1198–1210. [Google Scholar] [CrossRef]
- Anderl, B.; Attmannspacher, W.; Schultz, G.A. Accuracy of reservoir inflow forecasts based on radar rainfall measurements. Water Resour. Res. 1976, 12, 217–223. [Google Scholar] [CrossRef]
- Bonnema, M.; Sikder, S.; Miao, Y.; Chen, X.; Hossain, F.; Ara Pervin, I.; Mahbubur Rahman, S.M.; Lee, H. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls. Water Resour. Res. 2016, 52, 4095–4115. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Sridhar, V. Deriving the reservoir conditions for better water resource management using satellite-based earth observations in the lower Mekong River basin. Remote Sens. 2019, 11, 2872. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.; Shin, H.; Yoon, S. Research on dam inflow analysis based on radar rainfall data. EGU Gen. Assem. 2020 2020, 2116, 5194. [Google Scholar]
- Sivapalan, M. The secret to “doing better hydrological science”: Change the question! Hydrol. Process. 2009, 23, 1391–1396. [Google Scholar] [CrossRef]
- Razavi, T.; Coulibaly, P. Improving streamflow estimation in ungauged basins using a multi-modelling approach. Hydrol. Sci. J. 2016, 61, 2668–2679. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Wagener, T.; Liu, Y. Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Process. 2008, 22, 3802–3813. [Google Scholar] [CrossRef]
- van Emmerik, T.; Mulder, G.; Eilander, D.; Piet, M.; Savenije, H. Predicting the ungauged basin: Model validation and realism assessment. Front. Earth Sci. 2015, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Buras, N. Practical estimation of inflows into multireservoir system. J. Water Resour. Plan. Manag. 2000, 126, 331–334. [Google Scholar] [CrossRef]
- Parajka, J.; Viglione, A.; Rogger, M.; Salinas, J.L.; Sivapalan, M.; Blöschl, G. Comparative assessment of predictions in ungauged basins—Part 1: Runoff-hydrograph studies. Hydrol. Earth Syst. Sci. 2013, 10. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, X.; Yang, D. Effect of streamflow forecast uncertainty on real-time reservoir operation. Adv. Water Resour. 2011, 34, 495–504. [Google Scholar] [CrossRef]
- Turner, S.W.D.; Xu, W.; Voisin, N. Inferred inflow forecast horizons guiding reservoir release decisions across the United States. Hydrol. Earth Syst. Sci. 2020, 24, 1275–1291. [Google Scholar] [CrossRef] [Green Version]
- Yeh, W.W. Reservoir Management and Operations Models: A State-of-the-Art Review. Water Resour. Res. 1985, 21, 1797–1818. [Google Scholar] [CrossRef]
- Jain, S.K.; Das, A.; Srivastava, D.K. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manag. 1999, 125, 263–271. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230, 244–257. [Google Scholar] [CrossRef]
- Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433–441. [Google Scholar] [CrossRef]
- Lima, L.M.M.; Popova, E.; Damien, P. Modeling and forecasting of Brazilian reservoir inflows via dynamic linear models. Int. J. Forecast. 2014, 30, 464–476. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Sule, B.F.; Loucks, D.P. Stochastic dynamic programming models for reservoir operation optimization. Water Resour. Res. 1984, 20, 1499–1505. [Google Scholar] [CrossRef]
- Faber, B.A.; Stedinger, J.R. Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. J. Hydrol. 2001, 249, 113–133. [Google Scholar] [CrossRef]
- Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R. Tree-based reinforcement learning for optimal water reservoir operation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Denaro, S.; Anghileri, D.; Giuliani, M.; Castelletti, A. Informing the operations of water reservoirs over multiple temporal scales by direct use of hydro-meteorological data. Adv. Water Resour. 2017, 103. [Google Scholar] [CrossRef] [Green Version]
- Stern, C.V.; Normand, A.E. Bureau of Reclamation: History, Authorities, and Issues for Congress; Report No. R46303 2020-04; Congressional Research Service: Washington, DC, USA, 2020; p. 24. [Google Scholar]
- U.S. Department of Commerce; U.S. Department of Interior. Federal Action Plan for Improving Forecasts of Water Availability; Report from October 2019; U.S. Department of Interior: Washington, DC, USA, 2019.
- Viterbo, F.; Mahoney, K.; Read, L.; Salas, F.; Bates, B.; Elliott, J.; Cosgrove, B.; Dugger, A.; Gochis, D.; Cifelli, R. A multiscale, hydrometeorological forecast evaluation of national water model forecasts of the may 2018 Ellicott City, Maryland, Flood. J. Hydrometeorol. 2020, 21, 475–499. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction (NCEP). National Water Model Products. Available online: https://www.nco.ncep.noaa.gov/pmb/products/nwm/ (accessed on 9 August 2020).
- Office of Water Prediction The National Water Model. Available online: https://water.noaa.gov/about/nwm (accessed on 16 August 2020).
- Gochis, D.J.; Barlage, M.; Cabell, R.; Casali, M.; Dugger, A.; Fitzgerald, K.; Mcallister, M.; Mccreight, J.; Rafieeinasab, A.; Read, L.; et al. The WRF-Hydro Modeling System Technical Description; Version 5.1; NCAR Techinical Notes. 2020. Available online: https://ral.ucar.edu/sites/default/files/public/WRF-HydroV5TechnicalDescription.pdf (accessed on 17 August 2020).
- McKay, L.; Bondelid, T.; Dewald, T.; Johnston, J.; Moore, R.; Rea, A. NHDPlus Version 2: User Guide; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- Bureau of Reclamation. Reclamation Information Sharing Environment (RISE). Data Portal. Available online: https://water.usbr.gov/docs/RISE.pdf (accessed on 12 October 2020).
- Kim, J.; Read, L.; Johnson, L.E.; Gochis, D.; Cifelli, R.; Han, H. An experiment on reservoir representation schemes to improve hydrologic prediction: Coupling the national water model with the HEC-ResSim. Hydrol. Sci. J. 2020. [Google Scholar] [CrossRef]
- Bureau of Reclamation. Water Operations: Historic Data. Available online: https://www.usbr.gov/rsvrWater/HistoricalApp.html (accessed on 8 September 2020).
- Lukas, J.; Payton, E. Colorado River Basin Climate and Hydrology: State of the Science. Western Water Assessment. 2020. Available online: https://wwa.colorado.edu/publications/reports/CRBreport/ (accessed on 30 August 2020).
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Gochis, D.; Yates, D.; Sampson, K.; Dugger, A.; McCreight, J.; Barlage, M.; RafieeiNasab, A.; Karsten, L.; Read, L.; Zhang, Y.; et al. Overview of National Water Model Calibration General Strategy & Optimization. Available online: https://ral.ucar.edu/sites/default/files/public/9_RafieeiNasab_CalibOverview_CUAHSI_Fall019_0.pdf (accessed on 9 August 2020).
- Falcone, J.A. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow. US Geological Survey Digital Spatial Dataset. 2011. Available online: https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (accessed on 11 July 2020).
- McCabe, G.J.; Wolock, D.M. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Clim. Chang. 2010, 99, 141–153. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers National Inventory of Dams. Available online: https://www.publications.usace.army.mil/Portals/76/Publications/EngineerPamphlets/EP_360-1-23.pdf (accessed on 16 July 2019).
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Hazewinkel, M. (Ed.) Encyclopaedia of Mathematics: C An Updated and Annotated Translation of the Soviet Mathematical Encyclopaedia; Springer Science & Business Media: New York, NY, USA, 2013; Volume 2. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Van der Vaart, H.R. Some extensions of the idea of bias. Ann. Math. Stat. 1961, 32, 436–447. [Google Scholar] [CrossRef]
Reservoir | Full Name | State | BoR region | Ecoregion | snow over total precip [%] | N. of lakes | Gauged area [%] | Area Lake [km2] | Area Basin [km2] | Calib. Area [%] | Main Purpose |
---|---|---|---|---|---|---|---|---|---|---|---|
ber | Lake Berryessa And Monticello Dam | CA | MP | 6 | 2 | 0 | 20 | 76 | 1469 | 0 | I |
cch | Cachuma Lake And Bradbury Dam | CA | MP | 8 | 5 | 1 | 84 | 13 | 1081 | 18 | I |
sha | Shasta Lake | CA | MP | 9 | 33 | 20 | 53 | 113 | 21240 | 72 | FC |
limr | Lima Rsv Upstr of Clark Canyon Rsv | MT | GP | 17 | 47 | 4 | 7 | 18 | 1463 | 0 | I |
ptr | Pactola Rsv nr Rapid City | SD | GP | 17 | 47 | 1 | 93 | 3 | 820 | 25 | FC |
cfr | Canyon Ferry Lake nr Helena | MT | GP | 17 | 38 | 15 | 14 | 136 | 41218 | 8 | FC |
blr | Bull Lake Rsv on Bull Lake Creek | WY | GP | 17 | 62 | 0 | 91 | 12 | 535 | 90 | FC |
bigsandy | Big Sandy Rsv | WY | UC | 18 | 47 | 0 | 83 | 9 | 1016 | 0 | I |
boyr | Boysen Rsv | WY | GP | 18 | 31 | 7 | 61 | 78 | 19952 | 7 | FC |
patr | Pathfinder Rsv | WY | GP | 18 | 32 | 6 | 81 | 89 | 27583 | 2 | H |
guer | Guernsey Rsv | WY | GP | 18 | NA | 9 | 94 | 8 | 40995 | 1 | H |
joesvalley | Joes Valley Rsv | UT | UC | 19 | 47 | 0 | 0 | 5 | 381 | 0 | FC |
moonlake | Moon Lake Rsv | UT | UC | 19 | 63 | 0 | 70 | 3 | 290 | 0 | I |
scofield | Scofield RSV | UT | UC | 19 | 58 | 0 | 63 | 11 | 402 | 17 | I |
pineview | Pineview Rsv | UT | UC | 19 | 55 | 0 | 45 | 10 | 792 | 0 | I |
deercreek | Deer Creek Rsv | UT | UC | 19 | 52 | 0 | 81 | 10 | 1419 | 0 | I |
echoreservoir | Echo Rsv | UT | UC | 19 | 51 | 1 | 92 | 5 | 1874 | 0 | FC |
rockportreservoir | Rockport Rsv | UT | UC | 19 | 56 | 0 | 87 | 4 | 866 | 0 | I |
lemon | Lemon Rsv | CO | UC | 21 | 55 | 0 | 0 | 3 | 174 | 0 | FW |
navajo | Navajo Rsv | NM | UC | 21 | 38 | 3 | 76 | 62 | 8302 | 2 | FC |
morrowpoint | Morrow Point Rsv | CO | UC | 21 | NA | 3 | 66 | 4 | 9420 | 42 | FC |
rueresco | Ruedi Rsv nr Basalt | CO | GP | 21 | 61 | 0 | 21 | 4 | 579 | 0 | H |
taylorpark | Taylor Park Rsv | CO | UC | 21 | 62 | 0 | 50 | 8 | 658 | 50 | I |
elephantbuttedam | Elephant Butte Rsv | NM | UC | 22 | NA | 15 | 81 | 23 | 77826 | 7 | FC |
lvks | Lovewell Dam | KS | GP | 27 | 9 | 0 | 66 | 12 | 896 | 65 | FC |
hsne | Harry Strunk Lake (Medicine Creek Dam) | NE | GP | 27 | 9 | 0 | 0 | 7 | 2295 | 0 | FC |
gibr | Gibson Rsv | MT | GP | 41 | 55 | 0 | 92 | 5 | 1436 | 0 | I |
sher | Lake Sherburne | MT | GP | 41 | 68 | 0 | 47 | 5 | 171 | 23 | I |
ler | Lale Elwell Spillway Transducer | MT | GP | 42 | 24 | 10 | 62 | 60 | 11378 | 0 | FC |
pist | Pipestem Dam | ND | GP | 42 | 17 | 0 | 68 | 8 | 2342 | 0 | FC |
shr | Shadehill Rsv on the Grand River | SD | GP | 42 | 14 | 1 | 83 | 21 | 7751 | 0 | FC |
ltr | Lake Tshida (Heart Butte) | ND | GP | 43 | 17 | 1 | 89 | 13 | 4438 | 9 | FC |
hbne | Hugh Butler Lake (Red Willow Dam) | NE | GP | 44 | 10 | 0 | 0 | 6 | 1775 | 0 | FC |
jamr | Jamestown Rsv | ND | GP | 46 | 18 | 6 | 65 | 18 | 4132 | 66 | FC |
kwks | Kirwin Rsv at Kirwin | KS | GP | 27 | 0 | 0 | 92 | 20 | 3634 | 0 | FC |
altus | Altus Dam | OK | GP | 27 | 94 | 0 | 94 | 18 | 6637 | 94 | I |
sharesco | Shadow Mountain Rsv | CO | GP | 21 | 0 | 0 | 77 | 7 | 477 | 0 | I |
edne | Enders Dam and Dike | NE | GP | 25 | 0 | 0 | 0 | 7 | 3310 | 0 | FC |
htoothr | Horsetooth Rsv nr Fort Collins | CO | GP | 21 | 0 | 0 | 0 | 7 | 42 | 0 | I |
keyr | Keyhole Rsv | WY | GP | 43 | 1 | 0 | 86 | 3 | 5054 | 1 | FC |
ksks | Keith Sebelius Lake (Norton Dam) | KS | GP | 27 | 84 | 0 | 85 | 8 | 1799 | 84 | FC |
nelr | Nelson rsv at Dam 10 miles NW of Saco | MT | GP | 42 | 0 | 0 | 0 | 17 | 81 | 0 | I |
Model Cycle | |||
---|---|---|---|
Purpose 1 | Short Range | Medium Range | Long Range |
Water Supply | x | ||
Irrigation (12) | x | x | |
Hydropower (3) | x | x | x |
Flood Control (18) | x | x | |
Ecosystem (1) | x | x |
(a) | ||||
Total (86%) | ONDJFM (84%) | AMJ (87%) | JAS (91%) | |
r | 0.47 | −0.12 | 0.64 | 0.25 |
relBias | −0.44 | −0.6 | −0.33 | −0.42 |
NSE | 0.18 | −0.47 | 0.35 | −2,21 |
(b) | ||||
Total (86%) | ONDJFM (84%) | AMJ (87%) | JAS (91%) | |
r | 0.89 | 0.73 | 0.87 | 0.92 |
relBias | −0.27 | −0.24 | −0.15 | −0.58 |
NSE | 0.74 | 0.44 | 0.71 | 0.12 |
Reservoir | Main Purpose | Ecoregion | Snow over Total Precip [%] | N. of Lakes | Gauged Area [%] | Area Lake [km2] | Area Basin [km2] | Calib. Area [%] | NSE Retro | NSE Short Range | NSE Medium Range | NSE Long Range | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+1 | +9 | +18 | +1 | +120 | +240 | +6 | +360 | +720 | ||||||||||
ber | I | 6 | 2 | 0 | 20 | 76 | 1469 | 0 | 0.47 | |||||||||
cch | I | 8 | 5 | 1 | 84 | 13 | 1081 | 18 | −16.61 | −0.35 | −0.34 | 0.18 | −0.40 | −0.54 | −0.52 | −0.28 | 0.01 | −3.17 |
mltr | FC | 9 | 33 | 20 | 53 | 113 | 21,240 | 72 | 0.61 | −0.67 | −0.94 | −0.99 | −0.85 | −1.43 | −1.70 | −1.16 | −1.80 | −4.78 |
cfr | FC | 17 | 38 | 15 | 14 | 136 | 41,218 | 8 | −8.58 | 0.95 | 0.95 | 0.91 | 0.95 | −5.39 | −8.04 | 0.96 | −4.63 | −4.49 |
limr | I | 17 | 47 | 4 | 7 | 18 | 1463 | 0 | −9.45 | −0.08 | −0.11 | −0.14 | −0.11 | −0.95 | −1.42 | −0.09 | −0.98 | −1.38 |
ptr | FC | 17 | 47 | 1 | 93 | 3 | 820 | 25 | 0.21 | 0.34 | −2.45 | −4.18 | 0.24 | −6.02 | −11.12 | −0.59 | −6.17 | −4.54 |
blr | FC | 17 | 62 | 0 | 91 | 12 | 535 | 90 | 0.70 | 0.95 | 0.73 | 0.72 | 0.90 | 0.25 | −0.59 | 0.79 | 0.56 | 0.41 |
boyr | FC | 18 | 31 | 7 | 61 | 78 | 19,952 | 7 | −0.01 | 0.89 | 0.89 | 0.50 | 0.89 | −1.65 | −3.28 | 0.87 | −0.77 | −1.19 |
patr | I | 18 | 32 | 6 | 81 | 89 | 27,583 | 2 | −18.19 | −0.44 | −0.63 | −1.01 | −0.45 | −8.97 | −12.16 | −0.53 | −11.55 | −20.89 |
bigsandy | I | 18 | 47 | 0 | 83 | 9 | 1016 | 0 | −0.43 | 0.66 | 0.48 | 0.27 | 0.65 | −0.93 | −2.18 | 0.56 | −0.09 | −0.22 |
guer | H | 18 | NA | 9 | 94 | 8 | 40,995 | 1 | −9.29 | −0.54 | −0.54 | −0.82 | −0.54 | −4.02 | −13.00 | −0.54 | −15.95 | −25.41 |
joesvalley | FC | 19 | 47 | 0 | 0 | 5 | 381 | 0 | −0.16 | 0.69 | 0.57 | 0.37 | 0.70 | 0.73 | −0.07 | 0.24 | 0.73 | 0.72 |
echoreservoir | FC | 19 | 51 | 1 | 92 | 5 | 1874 | 0 | −39.71 | 0.90 | −12.24 | −24.13 | 0.81 | −36.08 | −41.84 | −1.17 | −35.89 | −34.95 |
deercreek | I | 19 | 52 | 0 | 81 | 10 | 1419 | 0 | −7.35 | 0.78 | −5.03 | −2.52 | 0.67 | −3.62 | −4.89 | −1.27 | −2.73 | −2.50 |
pineview | I | 19 | 55 | 0 | 45 | 10 | 792 | 0 | 0.39 | 0.83 | 0.70 | 0.66 | 0.79 | 0.58 | 0.24 | 0.72 | 0.51 | 0.68 |
rockportreservoir | I | 19 | 56 | 0 | 87 | 4 | 866 | 0 | −16.16 | −1.36 | −86.33 | −95.40 | −11.29 | −158.93 | −191.73 | −56.05 | −157.75 | −141.63 |
scofield | I | 19 | 58 | 0 | 63 | 11 | 402 | 17 | −0.19 | 0.22 | −0.02 | −0.08 | 0.18 | −0.06 | −0.07 | 0.03 | −0.27 | −0.74 |
moonlake | I | 19 | 63 | 0 | 70 | 3 | 290 | 0 | −0.12 | 0.31 | 0.17 | 0.17 | 0.28 | 0.07 | −0.56 | −0.95 | −0.21 | −0.32 |
navajo | FC | 21 | 38 | 3 | 76 | 62 | 8302 | 2 | 0.74 | 0.75 | 0.58 | 0.28 | 0.75 | −0.29 | −0.32 | 0.65 | −9.28 | −10.82 |
lemon | FW | 21 | 55 | 0 | 0 | 3 | 174 | 0 | 0.55 | 0.56 | 0.57 | 0.56 | 0.55 | 0.50 | 0.55 | −6.09 | −0.28 | −0.47 |
rueresco | H | 21 | 61 | 0 | 21 | 4 | 579 | 0 | −1.13 | −7.39 | −10.30 | −10.73 | −8.10 | −13.26 | −17.25 | −35.85 | −10.54 | −15.36 |
taylorpark | I | 21 | 62 | 0 | 50 | 8 | 658 | 50 | 0.67 | 0.86 | 0.76 | 0.75 | 0.79 | 0.37 | 0.51 | −2.60 | −0.12 | −1.66 |
morrowpoint | FC | 21 | NA | 3 | 66 | 4 | 9420 | 42 | −1.36 | −0.70 | −1.30 | −2.00 | −0.75 | −2.21 | −2.25 | −1.31 | −14.36 | −32.07 |
elephantbuttedam | FC | 22 | NA | 15 | 81 | 23 | 77,826 | 7 | −58.01 | 0.75 | 0.72 | 0.48 | 0.75 | −2.21 | −16.85 | 0.74 | −86.27 | −132.15 |
lvks | FC | 27 | 9 | 0 | 66 | 12 | 896 | 65 | 0.18 | 0.66 | 0.54 | −4.64 | 0.63 | −0.78 | −0.45 | 0.66 | −0.01 | −0.05 |
hsne | FC | 27 | 9 | 0 | 0 | 7 | 2295 | 0 | −3.03 | −154.90 | −160.69 | −166.04 | −153.99 | −154.89 | −418.46 | −147.06 | −105.60 | −136.25 |
gibr | I | 41 | 55 | 0 | 92 | 5 | 1436 | 0 | 0.76 | 0.93 | 0.47 | 0.39 | 0.82 | 0.48 | 0.54 | 0.62 | 0.26 | 0.16 |
sher | I | 41 | 68 | 0 | 47 | 5 | 171 | 23 | 0.74 | 0.95 | 0.65 | 0.53 | 0.91 | 0.53 | 0.52 | 0.75 | 0.42 | 0.30 |
pist | FC | 42 | 17 | 0 | 68 | 8 | 2342 | 0 | −0.08 | −0.22 | 0.09 | 0.10 | 0.07 | −0.64 | 0.16 | 0.06 | −13.14 | −29.56 |
ler | FC | 42 | 24 | 10 | 62 | 60 | 11,378 | 0 | −1.48 | −1.00 | −0.66 | 0.52 | −1.01 | 0.59 | 0.49 | −1.05 | 0.57 | 0.51 |
shr | FC | 43 | 14 | 1 | 83 | 21 | 7751 | 0 | 0.21 | −1.96 | −0.23 | −0.13 | −2.81 | −0.75 | −0.56 | −1.59 | −15.27 | −224.52 |
ltr | FC | 43 | 17 | 1 | 89 | 13 | 4438 | 9 | −0.20 | −0.15 | 0.01 | −0.14 | 0.01 | −0.45 | −0.06 | 0.00 | −2.07 | −35.12 |
hbne | FC | 44 | 10 | 0 | 0 | 6 | 1775 | 0 | −26.11 | −159.76 | −163.08 | −160.60 | −157.51 | −217.66 | −389.11 | −155.39 | −304.84 | −371.83 |
jamr | FC | 46 | 18 | 6 | 65 | 18 | 4132 | 66 | −0.02 | −1.35 | −1.51 | −1.39 | −1.50 | −18.16 | −19.17 | −2.18 | −195.35 | −634.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viterbo, F.; Read, L.; Nowak, K.; Wood, A.W.; Gochis, D.; Cifelli, R.; Hughes, M. General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities. Water 2020, 12, 2897. https://doi.org/10.3390/w12102897
Viterbo F, Read L, Nowak K, Wood AW, Gochis D, Cifelli R, Hughes M. General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities. Water. 2020; 12(10):2897. https://doi.org/10.3390/w12102897
Chicago/Turabian StyleViterbo, Francesca, Laura Read, Kenneth Nowak, Andrew W. Wood, David Gochis, Robert Cifelli, and Mimi Hughes. 2020. "General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities" Water 12, no. 10: 2897. https://doi.org/10.3390/w12102897
APA StyleViterbo, F., Read, L., Nowak, K., Wood, A. W., Gochis, D., Cifelli, R., & Hughes, M. (2020). General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities. Water, 12(10), 2897. https://doi.org/10.3390/w12102897