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Abstract: This work investigates the utility of the National Oceanic and Atmospheric Administration’s
National Water Model (NWM) for water management operations by assessing the total inflow into
a select number of reservoirs across the Central and Western U.S. Total inflow is generally an
unmeasured quantity, though critically important for anticipating both floods and shortages in
supply over a short-term (hourly) to sub-seasonal (monthly) time horizon. The NWM offers such
information at over 5000 reservoirs across the U.S., however, its skill at representing inflow processes
is largely unknown. The goal of this work is to understand the drivers for both well performing
and poor performing NWM inflows such that managers can get a sense of the capability of NWM
to capture natural hydrologic processes and in some cases, the effects of upstream management.
We analyzed the inflows for a subset of Bureau of Reclamation (BoR) reservoirs within the NWM
over the long-term simulations (retrospectively, seven years) and for short, medium and long-range
operational forecast cycles over a one-year period. We utilize ancillary reservoir characteristics (e.g.,
physical and operational) to explain variation in inflow performance across the selected reservoirs.
In general, we find that NWM inflows in snow-driven basins outperform those in rain-driven, and that
assimilated basin area, upstream management, and calibrated basin area all influence the NWM’s
ability to reproduce daily reservoir inflows. The final outcome of this work proposes a framework for
how the NWM reservoir inflows can be useful for reservoir management, linking reservoir purposes
with the forecast cycles and retrospective simulations.

Keywords: national water model; water management; total inflow; bureau of reclamation;
reservoir characterization; reservoir inflows; retrospective evaluation; forecast evaluation; distributed
hydrological modelling; reclamation information sharing environment (rise)

1. Introduction

Management decisions regarding reservoir storage and releases require accurate and timely
knowledge of the contributing inflows from the basin [1–5]. Most global watersheds still remain
completely ungauged, partially gauged or poorly gauged [6–8]. This lack of hydrological information
also limits the possibility to measure reservoir inflows, largely due to high uncertainties in over-lake
precipitation estimates and unmeasured streamflow from minor tributaries [9,10]. Even if some efforts
have been made in using satellite data and radar data to implement reservoir inflow estimates [11–14]
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there is still need to invest more money into field survey data and more ground truth measurements.
Knowing these limitations, the field of hydrology has begun to shift more emphasis toward large
scale hydrologic modelling [15–19], which can take advantage of remote sensing estimates for
unmeasured quantities.

In the Western U.S., especially, relatively large contributions of drainage into a reservoir may
be ungauged or seasonally gauged, leaving managers to rely on qualitative or climatological data
which may not be robust for real-time operations [20]. At the same time, the adoption of forecasts into
operations is limited due to uncertainty in the accuracy of inflow stream forecasts [21,22]. Since most
reservoirs are multi-purpose, competing objectives such as flood control, irrigation, and instream
flow requirements mean that management is dynamic and requires accurate information about the
meteorological and hydrological conditions from the preceding days/months as well as some idea of
the near-future forecast conditions.

Reservoir inflow forecast methods and applications are generally grouped as statistical, such as
learning-based algorithmic, or utilize simulated streamflow from a process-based hydrologic model [23].
Approaches such as machine learning and neural networks that use training algorithms to represent
system dynamics have been applied specifically to predict reservoir inflow [24,25], as have methods that
use auto-regressive (integrated) moving average (ARMA/ARIMA) models [26]. Implementation of such
models generally requires a rich dataset for which there are significant capital costs in data collection and
model development per individual basin (or case study). Others have applied optimization principles
to develop reservoir inflows forecasts, using linear programming, dynamic [27], and stochastic dynamic
programming [28]. In these applications, inflows are usually stochastic variables drawn from historical
data [29,30]. Previous studies have shown the potential benefits of including hydro-meteorological
variables and inflow streamflow forecasts for short-term reservoir planning [1,31], though this is still
not common practice among agencies. The purpose of this paper is to investigate the utility of a
new operational forecasting system, the National Oceanic Atmospheric Administration’s (NOAA’s)
National Water Model (NWM) in informing the inflows of reservoirs for Bureau of Reclamation
(BoR) operations.

The BoR manages more than 600 dams and reservoirs over 17 Western States, bringing water
to more than 31 million people, irrigating 10 millions of acres of lands, being the country’s largest
wholesaler of water and the country’s second-largest producer of hydropower (after the US Army Corp
of Engineers [32]). The BoR operates water projects across the Western U.S. These water infrastructure
projects provide agricultural, municipal, and industrial water to about one-third of the population in
the American West. Projects are operated pursuant to applicable treaties, compacts, federal and state
regulations, contracts, and other requirements. Within this landscape, operational flexibilities are used
to strike an equitable balance between the many, at times competing, services these projects provide
(e.g., hydropower, recreational releases, etc.). To effectively deliver these services, accurate forecasts of
the total inflow into BoR reservoirs is fundamental for managing water in a safe and sustainable way,
through its storage and release into the river network.

The BoR widely depends on forecast products from Weather Forecast Offices (WFOs) and River
Forecast Centers (RFCs) to inform different types of management decisions. For example, for spring
runoff, basin simulations provide general snowpack and antecedent moisture conditions to help
predict expected seasonal runoff. At shorter timescales, RFC streamflow and runoff forecasts based
on operational meteorological products are used to inform release scheduling decisions, from flood
control to instream flows. Despite the ability to transfer this water management information at local
offices, the recent 2019 Federal Action plan [33] indicates the need to “improve and expand use of
water forecast information to benefit water management outcomes”. Example needs from findings
in this report include: (i) improve consistency in hydrologic forecast products from days to seasons
(subseasonal to seasonal forecasting) and (ii) incorporate key operational weather and climate outlooks,
(iii) increase the reliability and skill of the currently available precipitation and hydrologic (e.g.,
streamflow) forecast products and (iv) incorporate them in water management decisions, (v) expand
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the usage of continental scale hydrologic modeling (such as NWM) in order to expand geographic
coverage of forecast products to ungauged areas and (vi) provide predictive capabilities on key water
budgeting components such as snow states, soil moisture, evapotranspiration, runoff, and streamflow.
While recent publications on NWM and operational interest concentrate streamflow evaluation [34],
this paper focuses on understanding the ability of the NWM to capture total reservoir inflow, defined as
the total contribution of tributaries (gauged and ungauged) into reservoirs, and the conditions for
which the NWM can be useful for water use planning. The intent of this paper is to examine and explain
the behavior of NWM reservoir inflows to inform BoR planning and operations, especially in reservoirs
and watersheds that do not have total inflow forecast information available and for which managers
are charged with making short to mid-order decisions (0−30 day) based on inflow information.

In a two-part approach, we first conduct a quantitative evaluation of NWM forecasts and
multi-year retrospective simulations. Second, we use the assessment results to investigate the physical
mechanisms that drive differences in performance across reservoirs and contextualize this performance
within the BoR’s reservoir operations objectives. As a final outcome of this work, we develop a set of
recommendations for integrating the NWM into BoR reservoir operation decisions. This work is the
first of its kind to evaluate a large set of NWM reservoir inflows for the specific purpose of exploring
pathways for use in BoR operations and management. This paper is organized as follows: Section 2
describes the materials and methods for the inflow analyses, Section 3 illustrates the results, Section 4
presents a discussion of the results, and Section 5 offers concluding remarks.

2. Materials and Methods

2.1. NWM Background

Since inception into operations on the National Centers for Environmental Prediction (NCEP)
high-performance computing system in August 2016, the NOAA−NWM has been providing
real-time distributed continuous hydrologic forecasts across the Continental United States (CONUS),
its contributing watersheds, and Hawaii, in four temporal cycles. The NWM development cycle is
such that it is difficult to complete a detailed analysis of one version before the next version is updated
and pushed for operations. During this study the NWMv1.2 upgraded to v2.0, so for completeness
(availability of a full year of forecasts), we focus this study on v1.2. As of NWMv1.2, the cycles consist
of an analysis and assimilation (hourly), short range (hourly from 1−18 h), medium range (six hourly,
1−10 days), and long range (daily, four-member ensemble, 1−30 days); for details on the cycles and
configurations, see the service agreement [35], the NOAA official website [36] and references therein.
The model base for NWM is the Weather Research Forecast (WRF)−Hydro system, which is described
by [37]. The NWM configuration is an instance of the WRF−Hydro modeling framework that couples
the Noah−MP land surface model at a one-kilometer grid spacing to an overland routing diffusive
wave scheme at 250 m; the resulting infiltration excess is mapped from its catchments to a channel
network based on the National Hydrography Dataset (NHD)Plus v2.1 [38].

The outputs of the NWM include streamflow and other hydrologic variables that describe
hydrological states on the land surface (moisture and heat fluxes, snowpack characteristics, soil moisture
and infiltration variables, etc.), at ~2.7 million river reaches and 5459 waterbodies (lakes and reservoirs
as of NWM v2.0).

The physics of the WRF−Hydro channel and waterbody routing and representation are fully
described in [37]. Briefly, the NWM collects streamflow from contributing streams and aggregates
it within a waterbody to calculate the total inflow per time step. The outflow is then routed using a
simple level-pool scheme, whereby outflow is controlled by static physical parameters (surface area and
maximum depth) and parameterized outflow mechanisms (orifice and weir). Waterbodies in the NWM
are required to have a minimum surface area of one km2, contain at least one “on-channel” inflow
tributary reach, and have exactly one discharge point. Note that due to data limitations, the NWM
does not currently distinguish between a managed reservoir and a natural lake, though as data services
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like the BoR Reclamation Information Sharing Environment (RISE) data service [39], the US Army
Corps Water Management System (CWMS) and Access2Water (AWS) become more streamlined, it may
be possible to ingest classification information to inform such parameters and discharge mechanisms.
Development of data services to ingest real-time observations and forecasts of reservoir outflows is
on-going and planned for implementation in a future NWM version. Kim et al. (2020) [40] explored the
option to couple the NWM with a more sophisticated reservoir management model: the Hydrologic
Evaluation Center’s ResSim. In this configuration, NWM inflows were used as inputs into ResSim,
which computed outflows based on rule curves and operating plans; results for the Russian River case
showed significant improvement in representing managed outflows over the default NWM level pool
scheme. This type of advancement provides a pathway for using NWM inflows to couple with more
advanced outflow models, strengthening the motivation for understanding and improving NWM
reservoir inflow processes.

2.2. Reconstructed Total Inflow Observations

The inflow observations used for these comparisons are not direct observations, but are
reconstructed inflow estimates based on reservoir daily release and change in reservoir storage.
Reservoir evaporation and change in bank storage may be included in the calculations, depending on
the availability of the required parameters per reservoir [41].

The BoR distributes this information through the Reclamation Information Sharing Environment
(RISE) data portal, a publically available data service to view, access, and download historic and near
real-time data [39].

Generally, the reconstructed regulated total inflow calculation attempts to reproduce the true
total inflow of a reservoir, taking into account both natural and regulated components upstream.
A second product, unregulated inflow, removes the contributions from upstream reservoir operations
but still includes diversions/depletions to provide a naturalized inflow that is more independent of
management [42]. In the present paper, we use the BoR regulated total inflow to compare with NWM
total inflow variable, since our main target is to assess the NWM’s ability to capture the observed
states. Additionally, unregulated inflows were only available for three of the reservoirs in this selection,
and after a preliminary analysis, these reconstructions were not directly applicable for the purposes of
this project.

Finally, although the regulated total inflow is the best available observation for this analysis, it is a
derived product and carries intrinsic uncertainties. These uncertainties and observation errors vary
site by site, mainly impacted by the quality of elevation, evaporation and (in some cases) wind and
bank storage measurements. For this reason, the quality of the reconstructed reservoir inflows in this
study has been assessed through qualitative inspection of the hydrographs and through input from
BoR. As a result, each reservoir in the analysis has been assigned a code to denote quality from red
(noted data defects) to green (high fidelity), where orange is moderate fidelity.

Additionally, during periods of ice coverage or near-surface freezing, the BoR observations are not
available, thus some time gaps exist in the observed inflows; reservoirs with more than 30% missing
data over the total period were discarded.

2.3. Analysis Methods

2.3.1. Reservoir Selection

The reservoirs analyzed in this study were selected to include as many reservoirs as possible in
multiple regions of interest to the BoR. The reservoirs selected met two primary criteria: their presence
in both NWMv1.2 and NWMv2.0, and the availability and quality of observations from the RISE data
service. The intersection of NWM and RISE reservoirs resulted in 42 reservoirs, which serve as the
basis for this analysis. From these initial 42 reservoirs, we then discarded reservoirs with more than
30% missing data in either the retrospective or forecast period of interest, respectively, resulting in a
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final count of 33 reservoirs for both retrospective and forecast evaluation, eight reservoirs only for the
forecast analyses (since they had 30% missing data for the retrospective time-period but they matched
the criteria for the forecast time-period) and one reservoir (Lake Berriessa and Monticello Dam, ber) that
matched the data availability criteria for the retrospective, but not for the forecast evaluation. Figure 1
shows the locations of the reservoirs and associated watersheds colored by dominant Ecoregion (Level
3), which are groupings of geographic regions by similar physical attributes (see [43]).
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2.3.2. Reservoir Characterization

One goal of this effort is to identify the driving mechanisms for NWM inflow performance so that
the results can be generalized and the model may be improved. Thus in the evaluation, we classified
reservoirs according to characteristics that may influence the model performance: Ecoregion, percent of
watershed area calibrated, drainage area of the contributing watershed, percent assimilated area
upstream (described in this section and in Section 3.2 below), number of lakes upstream and percentage
of snow contribution over total precipitation. Some of the characteristics mentioned are referring to
physical characteristics of the watershed itself (e.g., Ecoregion, drainage area, percentage of snow
contribution), while others are particularly linked to the NWM architecture (percent of watershed
area calibration, percent of assimilated area upstream). Others, like Ecoregion, link both physical
characteristics of the watersheds and the NWM architecture, since the NWM parameters are calibrated
in representative watersheds and then regionalized as a function of Ecoregion in v1.2. For further
information about NWM calibration, the reader is referred to Gochis et al., 2019 [44].
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The characteristics were attributed as follows: Ecoregions—Level 3; the drainage area of the
reservoir’s contributing watershed was calculated using the NWM flow network; the percentage of
snow contribution was attributed using the GAGES2 dataset [45] where gauges from this dataset were
associated with the watersheds of each reservoir. The variable: “snow percent of total precipitation
estimate, mean for period 1901−2000” was used to define this characteristic, following McCabe and
Wolock (2010) [46]. The percent calibrated area is the NWMv1.2 calibrated area within the reservoir
watershed divided by the total contributing drainage area. The percent upstream assimilated area
(or, percent gauged area) is calculated by summing the contributing areas that belong to assimilation
gauges in the NWM and dividing by the total reservoir drainage area. This characteristic indicates
both how much assimilation correction has been performed upstream of the reservoir for the NWM
forecasts, and how many streamflow stations are present upstream of each reservoir. If the percent is
equal to zero, it means not only that the NWM forecast is unadjusted by assimilation, but it also means
that the area upstream of the reservoir is ungauged by United States Geological Survey (USGS). Finally,
the number of lakes upstream is defined as the number of NWM lakes or reservoirs contributing to the
inflow of a given reservoir, identified by tracing upstream on the flow network. A summary of the
reservoirs and characterizations are given in Table 1.

In addition to these physical and model-based classifications, we also used information from
the National Inventory of Dams (NID) database [47] to assign a primary purpose to each reservoir.
Using expert knowledge from BoR partners and local offices, the primary purpose was matched
with the NWM cycles that are most applicable for each reservoir purpose (Table 2). This association
was intended to emphasize the relevance of the NWM for specific reservoir purposes. The results
from the responses highlighted that, for example, the NWM long range forecast is more relevant for
irrigation, while the short and medium range forecast is more appropriate for flood control operations.
A summary of the stated primary purpose for each reservoir according to NID is also given in Table 1,
last column.

2.3.3. NWM Inflow Assessment

The inflow evaluation was conducted on the 34 selected reservoirs through two sets of model
simulations: (1) “retrospective”: a seven-year, hourly, open-loop (no assimilation) retrospective
simulation using the NWMv1.2 and NWMv2.0 forced by the National Land Data Assimilation System
(NLDAS−2) [48] downscaled and regridded on the 1-km NWM land-surface grid, and (2) “forecast”:
a one-year simulation of the operational NWMv1.2 short- (0−18h), medium- (0−10 days) and long-range
(0−30 days) forecast configurations, forced with NWM operational forcings, and with data assimilation
active. Model configuration details, including sources for meteorological forcings, and information
on downloading model outputs are available at Office of Water Prediction (2016) and references
therein [36].

Assessing both the forecast and retrospective simulations is important for obtaining a robust
evaluation and providing a more complete picture of overall NWM performance. The performance
of the NWM in forecast mode incorporates meteorological uncertainties coming from the weather
forecast forcings, and indicates the model’s general ability to capture shorter events across lead times
and to provide utility for operational decisions. In comparison, the retrospective is forced by weather
variables coming from analyses (NLDAS−2), and provides insight on overall model physics and
representation of seasonal processes that can be informative for longer-term planning. In dissecting
where and when the model shows congruence between the forecast and retrospective performance,
we can draw conclusions about its utility for reservoir management.
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Table 1. Reservoir and drainage basin characteristics. The numbers in the Ecoregion column correspond with the legend of Figure 1. In the main purpose column
abbreviations are used as following: I for Irrigation, FC for Flood Control, H for Hydroelectric, FW for Fish and Wildlife pond. BoR regions are abbreviated as MP for
Mid Pacific, GP for Great Plains, UC for Upper Colorado. Colors in column one indicates quality from reconstructed total inflows, from red (noted data defects) to
green (high fidelity), where orange is moderate fidelity.

Reservoir Full Name State BoR
Region Ecoregion Snow over

total Precip (%)
N. of
Lakes

Gauged
Area (%)

Area Lake
(km2)

Area Basin
(km2)

Calib.
Area (%)

Main
Purpose

ber Lake Berryessa And Monticello Dam CA MP 6 2 0 20 76 1469 0 I
cch Cachuma Lake And Bradbury Dam CA MP 8 5 1 84 13 1081 18 I
sha Shasta Lake CA MP 9 33 20 53 113 21240 72 FC
limr Lima Rsv Upstr of Clark Canyon Rsv MT GP 17 47 4 7 18 1463 0 I
ptr Pactola Rsv nr Rapid City SD GP 17 47 1 93 3 820 25 FC
cfr Canyon Ferry Lake nr Helena MT GP 17 38 15 14 136 41218 8 FC
blr Bull Lake Rsv on Bull Lake Creek WY GP 17 62 0 91 12 535 90 FC

bigsandy Big Sandy Rsv WY UC 18 47 0 83 9 1016 0 I
boyr Boysen Rsv WY GP 18 31 7 61 78 19952 7 FC
patr Pathfinder Rsv WY GP 18 32 6 81 89 27583 2 H
guer Guernsey Rsv WY GP 18 NA 9 94 8 40995 1 H

joesvalley Joes Valley Rsv UT UC 19 47 0 0 5 381 0 FC
moonlake Moon Lake Rsv UT UC 19 63 0 70 3 290 0 I
scofield Scofield RSV UT UC 19 58 0 63 11 402 17 I

pineview Pineview Rsv UT UC 19 55 0 45 10 792 0 I
deercreek Deer Creek Rsv UT UC 19 52 0 81 10 1419 0 I

echoreservoir Echo Rsv UT UC 19 51 1 92 5 1874 0 FC
rockportreservoir Rockport Rsv UT UC 19 56 0 87 4 866 0 I

lemon Lemon Rsv CO UC 21 55 0 0 3 174 0 FW
navajo Navajo Rsv NM UC 21 38 3 76 62 8302 2 FC

morrowpoint Morrow Point Rsv CO UC 21 NA 3 66 4 9420 42 FC
rueresco Ruedi Rsv nr Basalt CO GP 21 61 0 21 4 579 0 H

taylorpark Taylor Park Rsv CO UC 21 62 0 50 8 658 50 I
elephantbuttedam Elephant Butte Rsv NM UC 22 NA 15 81 23 77826 7 FC

lvks Lovewell Dam KS GP 27 9 0 66 12 896 65 FC
hsne Harry Strunk Lake (Medicine Creek Dam) NE GP 27 9 0 0 7 2295 0 FC
gibr Gibson Rsv MT GP 41 55 0 92 5 1436 0 I
sher Lake Sherburne MT GP 41 68 0 47 5 171 23 I
ler Lale Elwell Spillway Transducer MT GP 42 24 10 62 60 11378 0 FC
pist Pipestem Dam ND GP 42 17 0 68 8 2342 0 FC
shr Shadehill Rsv on the Grand River SD GP 42 14 1 83 21 7751 0 FC
ltr Lake Tshida (Heart Butte) ND GP 43 17 1 89 13 4438 9 FC

hbne Hugh Butler Lake (Red Willow Dam) NE GP 44 10 0 0 6 1775 0 FC
jamr Jamestown Rsv ND GP 46 18 6 65 18 4132 66 FC
kwks Kirwin Rsv at Kirwin KS GP 27 0 0 92 20 3634 0 FC
altus Altus Dam OK GP 27 94 0 94 18 6637 94 I

sharesco Shadow Mountain Rsv CO GP 21 0 0 77 7 477 0 I
edne Enders Dam and Dike NE GP 25 0 0 0 7 3310 0 FC

htoothr Horsetooth Rsv nr Fort Collins CO GP 21 0 0 0 7 42 0 I
keyr Keyhole Rsv WY GP 43 1 0 86 3 5054 1 FC
ksks Keith Sebelius Lake (Norton Dam) KS GP 27 84 0 85 8 1799 84 FC
nelr Nelson rsv at Dam 10 miles NW of Saco MT GP 42 0 0 0 17 81 0 I
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Table 2. Associations of National Water Model (NWM) model forecast cycles with reservoir purposes.
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Irrigation (12) x  x 
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Flood Control (18) x  x 

Ecosystem (1)  x x 
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The inflow evaluation was conducted on the 34 selected reservoirs through two sets of model 
simulations: (1) “retrospective”: a seven-year, hourly, open-loop (no assimilation) retrospective 
simulation using the NWMv1.2 and NWMv2.0 forced by the National Land Data Assimilation 
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The total reservoir hourly inflow from the NWM was aggregated to a daily timestep for comparison
with the BoR reconstructed daily inflow observations as follows: hours with same lead times (e.g.,
six-hour lead time) with valid times on each day were averaged for each day to create aggregated
daily forecasts. This was done for each forecast cycle (i.e., short-, medium-, and long-range) at their
respective output frequencies (i.e., hourly, three-hour, and six-hour, respectively).

NWM skill was assessed using three common goodness of fit statistics widely utilized in hydrology:
Pearson’s correlation coefficient (r), Nash–Sutcliffe Efficiency (NSE), and relative bias (relBias) [49–51].
We use relBias, which is a bias normalized by average inflow (Equation (1)),

relBias =
∑n

i=1(Pi −Oi)∑n
i=1 Oi

(1)

where Oi is the observation value and Pi is the forecast value, in order to compare reservoirs of different
sizes with one another. These skill scores were selected to give an indication of response congruence
(r), volumes (relBias), and an overall measure that considers both timing and volume (NSE).

3. Results

3.1. Retrospective Analyses

Retrospective NWM total inflow was analyzed in order to provide insight on overall model
physics and representation of seasonal processes. Since NWM was in the process of transitioning
from v1.2 to v2.0, we did an initial check on retrospective performance differences between the two
versions to ensure analysis from v1.2 is still relevant. Goodness of fit metrics were computed on
daily streamflow using the retrospective model simulations from NWMv1.2 and v2.0 against BoR
observations. Based on skill scores for r, relBias, and NSE, we note that inflows were generally improved
from v1.2 to v2.0 across most reservoirs, and that reservoirs with low skill in v1.2 also generally had
low skill in v2.0, indicating a persistent issue at these locations. Because a sufficient time period of
forecasts were only obtainable from NWMv1.2, and the retrospective evaluation confirms a similar
pattern between v2.0 and v1.2, NWMv1.2 is the focus of this analysis. Figure 2 shows the goodness of
fit scores for r, relBias, and NSE (top to bottom) for the retrospective evaluation in v1.2 (dark) and v2.0
(light), where the x-axis is sorted from left to right by an increasing number of lakes upstream (with the
count in brackets). The colors from green to red indicate the quality of the observations according to
the description in Section 2.2.
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Since the retrospective runs in ‘open-loop’, it does not account for managed upstream flows
or active data assimilation. While we would expect the NWM to be able to simulate inflows into
reservoirs with no management upstream better than those with multiple upstream lakes (Figure 2),
the results are mixed. Nevertheless, the high positive relBias in managed watersheds indicates that
NWM is simulating the unmanaged hydrology, which is not able to account for engineered inflow
reductions from upstream reservoir operations.

In parsing the NWM inflow performance by the full set of reservoir characteristics (as listed in
Table 1), expected patterns with percent calibrated area (Figure A1) and drainage basin size (Figure A2)
emerged. In reservoirs with a higher percent of calibrated area, NWM inflows show better performance,
especially for lakes with calibrated areas greater than ~10%. The relationship between modeled
inflow performance and lake drainage basin size is inverse, such that the model is able to simulate
inflows in lakes with smaller basins better than larger ones, likely because larger basins contain more
upstream management (e.g., diversions, lakes, etc.). Finally, snow percentage contribution over total
precipitation revealed better retrospective statistical scores for reservoirs with higher snow percentage
contribution (Figure A3). See additional material in Appendix A, Figures A1–A3 for visual reference to
these findings.

3.2. Forecast Assessment

This section presents the analysis of the NWM v1.2 daily inflow forecasts from September 2017
to August 2018 for the short, medium and long range forecast cycles. The results are sorted by
characteristic (number of lakes upstream, percentage of assimilated area upstream, solid precipitation
contribution and retrospective ranking) in order to investigate the influence of upstream management
and assimilation on the forecast performance, focusing also on the differences between snow-driven
and rain-driven total inflow contributions and how these different hydrological regimes are handled
by the NWM forecast. Sorting the forecast results by different characteristics helped to infer the impact
of each of these different elements on model performance.

As in the retrospective evaluation, the forecast analysis indicates that upstream management is a
factor in inflow performance (Figure 3). We note that the r in reservoirs with upstream management
is generally good (>0.7), but the relBias is high, whereas in the lakes without upstream management
(24 of the 36), the relBias indicates underestimation. This pattern is true across all forecast cycles.

Figure 4 illustrates how the percentage of upstream assimilated area, a proxy for gauged area,
influences each forecast cycle and lead times within. To explain the mechanisms governing this
behavior, a brief description of the NWM streamflow data assimilation follows. In the AnA cycle,
which provides the forecast initial conditions, nudging data assimilation is applied to the streamflow
state at ~7000 USGS streamflow gauge locations through a real-time data feed on the operational
system. Nudging is also applied in the forecast but only observations near the initialization time are
used and the effect of the nudge is relaxed (with two hour e-folding) as the forecast advances into the
future, beyond observations available near the initial time. Thus, we expect to see evidence of this
relaxation across the first 0−3 h in the short-range at many gages (top row, Figure 4). Lakes that have a
small percent of assimilation upstream exhibit two behaviors: low skill from early lead times, or good
performance through the entire cycle. In highly assimilated areas, on the contrary, the short-range in
some cases manages to keep memory of assimilation, improving the results even past the e-fold time
(e.g., ~5-h lead time or more for Pactola reservoir (ptr), Echo reservoir (echoreservoir), Elephant Butte
Dam (elephantbuttedam), Lovewell Dam (lvks), etc.). In contrast, the effect of large assimilation on
medium and long range tends to dissipate relatively quickly over the longer lead times. In general,
the medium and long-range inflow forecasts are less reliable at longer lead times than the short-range.
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Figure 3. Performance of NWM reservoir inflows across lead times for one year, where reservoirs in
each subplot are ordered from bottom to top by the number of upstream lakes (counts are listed in
parenthesis on the y-axis with reservoir name). The black bold line separates reservoirs with more than
zero lakes upstreams to the ones with zero lakes upstream.Each column from left to right columns
illustrate r, NSE, relBias, where the metric is scaled by color density and grey is out of valid range
(relBias > +1 or relBias < −1 and NSE < −1). For r and NSE, green values are higher performance and
red is worse; and for relBias, blue is high-biased and red is low-biased. The subplot rows are forecast
cycles: short (a), medium (b), long (c).
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Figure 4. Performance of NWM reservoir inflows across lead times for one year, where reservoirs in
each subplot are ordered from bottom to top by the percent of upstream assimilated area (percentages
are listed in parenthesis on the y-axis with reservoir name). The black bold line separates reservoirs
with no assimilation upstream to the ones that have assimilation upstream. Each column from left
to right columns illustrate r, NSE, relBias, where the metric is scaled by color density and grey is out
of valid range (relBias > +1 or relBias < −1 and NSE < −1). For r and NSE, green values are higher
performance and red is worse; and for relBias, blue is high-biased and red is low-biased. The subplot
rows are forecast cycles: short (a), medium (b), long (c).

In watersheds that are dominated by snow-driven processes, the r and NSE skill scores over the
forecast cycles and across lead times tend to outperform those in rain-driven watersheds (Figure 5).
In addition, snow-driven watersheds have also less degradation of the performance as a function of lead
time in every forecast range (short, medium and long), even if some exceptions can still be found in the
pattern. Rain-driven watersheds have the tendency to overestimate the volumes, according to relBias
results, while reservoirs with greater snow contributions show more of a tendency to underestimate.
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These findings are encouraging and indicate that the NWM can reasonably reproduce snow-melt
runoff, an essential process for water resources management.
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Figure 5. Performance of NWM reservoir inflows across lead times for one year, where reservoirs in
each subplot are ordered from bottom to top by the percent contribution of snow in total precipitation
(percentages are listed in parenthesis on the y-axis with reservoir name). Each column from left to right
columns illustrate r, NSE, relBias, where the metric is scaled by color density and grey is out of valid
range (relBias > +1 or relBias < −1 and NSE < −1). For r and NSE, green values are higher performance
and red is worse; and for relBias, blue is high-biased and red is low-biased. The subplot rows are
forecast cycles: short (a), medium (b), long (c).

From the retrospective assessment, we can confirm that snow processes are a significant driver
in understanding inflow performance. For example, if we compare two reservoirs of similar size,
gauged area, but in different regions, Lake Sherburne (sher, 67.7% snow-driven, Canadian Rockies
ecoregion, 23% calibrated) and Lovewell Dam (lvks, 9.2% snow-driven, Central Great Plains ecoregion,
65% calibrated), the impact on the seasonal cycle is evident (Figure 6 and Table 3). The NWM is able to
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replicate the seasonal and annual cycles in the snow-driven watershed contributing to Lake Sherburne
reservoir (sher), while the peaks at Lovewell Dam (lvks) were not well aligned with the observations.
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Figure 6. Retrospective comparison of inflows from two sites, Lake Sherburne (a) (sher, 67.7%
snow-driven, Canadian Rockies, 23% calibrated) and Lovewell Dam (b) (lvks, 9.2% snow-driven,
Central Great Plains, 65% calibrated). Observed is in black, model simulation in gray.
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Table 3. Seasonal statistics for Lake Sherburne (sher) (panel a) and Lovewell Dam (lvks) (panel b). Rows
represent statistical scores (from top to bottom): r, relBias and NSE. The columns represent the scores
over each season: “total” refers to the total length of the retrospective time series, “ONDJFM” refers
to the time-period from October to March, “AMJ” refers to the time-period from April to June, “JAS”
refers to the time-period from July to September. The percentages in brackets next to each column
represent the percentage observational data availability over the time period of interest.

(a)

Total (86%) ONDJFM (84%) AMJ (87%) JAS (91%)

r 0.47 −0.12 0.64 0.25
relBias −0.44 −0.6 −0.33 −0.42
NSE 0.18 −0.47 0.35 −2,21

(b)

Total (86%) ONDJFM (84%) AMJ (87%) JAS (91%)

r 0.89 0.73 0.87 0.92
relBias −0.27 −0.24 −0.15 −0.58
NSE 0.74 0.44 0.71 0.12

3.3. Combined Assessment

In an effort to synthesize the factors that influence inflow performance, Table 4 summarizes the
reservoirs, sorted by Ecoregion, with the characteristics presented in Tables 1 and 2, and with the
retrospective NSE and the forecast-cycle NSE scores at three lead times.

To summarize the results from the retrospective and forecast evaluation, Table 4 and Figure 7 offer
visualizations of the combined analysis. Figure 7 provides a visual for assessing congruence between the
retrospective and forecast by comparing the NWM inflow performance between the two configurations
(ordered by NSE from bottom to top (best to worst) according to their retrospective ranking).

Taken together, the retrospective and forecast evaluation provide a comprehensive understanding
of the overall reservoir performance: the retrospective evaluation consists of a multi-year time series and
is forced by NLDAS analyses, that, even if have their own uncertainties, have assimilated observations
in the meteorological forcings. On the contrary, the forecast runs span shorter time periods (with varying
lead times for short, medium long range) and are forced by meteorological products that are derived
from forecast models (High-Resolution Rapid Refresh (HRRR) for the short range, Global Forecast
System (GFS) for the medium range, Climate Forecast System (CFS) for the long range). When the
retrospective shows favorable performance, it is plausible to assume that in that case the NWM is able
to sufficiently reproduce the physical processes over multiple years and seasons. The value of this
analysis is in understanding variance in model performance by season and by different model version
(since the meteorological forcings are the same) and using this knowledge to guide future development.
In the cases with poor retrospective performance, we expect similar behavior in the forecast, unless a
significant contribution from assimilation occurs at that site. Finally, when the retrospective skill score
are unsatisfactory, but the forecast performance is good, it is difficult to infer conclusions but further
investigations can be done in assessing the quality of the meteorological forcings (since, it is well
known that the hydrological model cannot correct the errors coming from the forcings). This is the
general set of guidelines to follow when synthesizing the two different evaluations (retrospective and
forecast). Nevertheless, due to the NWM complexity and the propagation of uncertainties from the
atmospheric forcings to the hydrology, the real answers are much more complicated and would require
a detailed study for each single reservoir case. This focus is outside the scope of the present study,
but hopefully this broader analysis will encourage researchers and stakeholders to deepen the analyses
on the local level.
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Table 4. Summary of reservoir characteristics and NSE skill scores for retrospective and forecasts (following page). The color densities indicate higher values for the
characteristics (e.g., larger lake surface area) while the red to green densities for the NSE scores indicate the relative performance (red is worse and green is better).
Ber does not show scores for the forecast since it had more than 30% missing data for the forecast period, as explained in Section 2.3.1. NA values for snow % are
associated with places in which the nearest USGS was not included in the GAGES2 database.

Reservoir
Main

Purpose
Ecoregion Snow over Total

Precip [%]
N. of
Lakes

Gauged
Area [%]

Area Lake
[km2]

Area Basin
[km2]

Calib.
Area [%]

NSE
Retro

NSE Short Range NSE Medium Range NSE Long Range
+1 +9 +18 +1 +120 +240 +6 +360 +720

ber I 6 2 0 20 76 1469 0 0.47
cch I 8 5 1 84 13 1081 18 −16.61 −0.35 −0.34 0.18 −0.40 −0.54 −0.52 −0.28 0.01 −3.17
mltr FC 9 33 20 53 113 21,240 72 0.61 −0.67 −0.94 −0.99 −0.85 −1.43 −1.70 −1.16 −1.80 −4.78
cfr FC 17 38 15 14 136 41,218 8 −8.58 0.95 0.95 0.91 0.95 −5.39 −8.04 0.96 −4.63 −4.49

limr I 17 47 4 7 18 1463 0 −9.45 −0.08 −0.11 −0.14 −0.11 −0.95 −1.42 −0.09 −0.98 −1.38
ptr FC 17 47 1 93 3 820 25 0.21 0.34 −2.45 −4.18 0.24 −6.02 −11.12 −0.59 −6.17 −4.54
blr FC 17 62 0 91 12 535 90 0.70 0.95 0.73 0.72 0.90 0.25 −0.59 0.79 0.56 0.41

boyr FC 18 31 7 61 78 19,952 7 −0.01 0.89 0.89 0.50 0.89 −1.65 −3.28 0.87 −0.77 −1.19
patr I 18 32 6 81 89 27,583 2 −18.19 −0.44 −0.63 −1.01 −0.45 −8.97 −12.16 −0.53 −11.55 −20.89

bigsandy I 18 47 0 83 9 1016 0 −0.43 0.66 0.48 0.27 0.65 −0.93 −2.18 0.56 −0.09 −0.22
guer H 18 NA 9 94 8 40,995 1 −9.29 −0.54 −0.54 −0.82 −0.54 −4.02 −13.00 −0.54 −15.95 −25.41

joesvalley FC 19 47 0 0 5 381 0 −0.16 0.69 0.57 0.37 0.70 0.73 −0.07 0.24 0.73 0.72
echoreservoir FC 19 51 1 92 5 1874 0 −39.71 0.90 −12.24 −24.13 0.81 −36.08 −41.84 −1.17 −35.89 −34.95

deercreek I 19 52 0 81 10 1419 0 −7.35 0.78 −5.03 −2.52 0.67 −3.62 −4.89 −1.27 −2.73 −2.50
pineview I 19 55 0 45 10 792 0 0.39 0.83 0.70 0.66 0.79 0.58 0.24 0.72 0.51 0.68

rockportreservoir I 19 56 0 87 4 866 0 −16.16 −1.36 −86.33 −95.40 −11.29 −158.93 −191.73 −56.05 −157.75 −141.63
scofield I 19 58 0 63 11 402 17 −0.19 0.22 −0.02 −0.08 0.18 −0.06 −0.07 0.03 −0.27 −0.74

moonlake I 19 63 0 70 3 290 0 −0.12 0.31 0.17 0.17 0.28 0.07 −0.56 −0.95 −0.21 −0.32
navajo FC 21 38 3 76 62 8302 2 0.74 0.75 0.58 0.28 0.75 −0.29 −0.32 0.65 −9.28 −10.82
lemon FW 21 55 0 0 3 174 0 0.55 0.56 0.57 0.56 0.55 0.50 0.55 −6.09 −0.28 −0.47

rueresco H 21 61 0 21 4 579 0 −1.13 −7.39 −10.30 −10.73 −8.10 −13.26 −17.25 −35.85 −10.54 −15.36
taylorpark I 21 62 0 50 8 658 50 0.67 0.86 0.76 0.75 0.79 0.37 0.51 −2.60 −0.12 −1.66

morrowpoint FC 21 NA 3 66 4 9420 42 −1.36 −0.70 −1.30 −2.00 −0.75 −2.21 −2.25 −1.31 −14.36 −32.07
elephantbuttedam FC 22 NA 15 81 23 77,826 7 −58.01 0.75 0.72 0.48 0.75 −2.21 −16.85 0.74 −86.27 −132.15

lvks FC 27 9 0 66 12 896 65 0.18 0.66 0.54 −4.64 0.63 −0.78 −0.45 0.66 −0.01 −0.05
hsne FC 27 9 0 0 7 2295 0 −3.03 −154.90 −160.69 −166.04 −153.99 −154.89 −418.46 −147.06 −105.60 −136.25
gibr I 41 55 0 92 5 1436 0 0.76 0.93 0.47 0.39 0.82 0.48 0.54 0.62 0.26 0.16
sher I 41 68 0 47 5 171 23 0.74 0.95 0.65 0.53 0.91 0.53 0.52 0.75 0.42 0.30
pist FC 42 17 0 68 8 2342 0 −0.08 −0.22 0.09 0.10 0.07 −0.64 0.16 0.06 −13.14 −29.56
ler FC 42 24 10 62 60 11,378 0 −1.48 −1.00 −0.66 0.52 −1.01 0.59 0.49 −1.05 0.57 0.51
shr FC 43 14 1 83 21 7751 0 0.21 −1.96 −0.23 −0.13 −2.81 −0.75 −0.56 −1.59 −15.27 −224.52
ltr FC 43 17 1 89 13 4438 9 −0.20 −0.15 0.01 −0.14 0.01 −0.45 −0.06 0.00 −2.07 −35.12

hbne FC 44 10 0 0 6 1775 0 −26.11 −159.76 −163.08 −160.60 −157.51 −217.66 −389.11 −155.39 −304.84 −371.83
jamr FC 46 18 6 65 18 4132 66 −0.02 −1.35 −1.51 −1.39 −1.50 −18.16 −19.17 −2.18 −195.35 −634.67
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Figure 7. Performance of NWM reservoir inflows across lead times for one year, where reservoirs
in each subplot are ordered from bottom to top by the retrospective ranking (best to worst, listed in
parenthesis on the y-axis with reservoir name). Each column from left to right columns illustrate r,
NSE, relBias, where the metric is scaled by color density and grey is out of valid range. The subplot
rows are forecast cycles: short (a), medium (b), long (c).

Generally, NWM reservoir inflow performance between the forecast and retrospective agree,
with some exceptions (Figure 7). One example of these exceptions is Navajo reservoir (navajo),
which ranks high in the retrospective evaluation but has poor goodness of fit metrics across forecast
cycles. This contrast between forecast and retrospective suggests issues with the meteorological
forcings used to drive the forecasts. In Navajo, only 2% of the contributing watershed is calibrated,
and 76% of the basin is gauged (high assimilation). The NWM simulates flows with high fidelity in the
retrospective (Figure 8, panel a), but some loss in performance in the forecast for some possible forcing
overestimation. The short range hydrograph is illustrated in Figure 8 panel b, while medium and long
range are available in the additional material in Figure A4. The converse is true for Elephant Butte
(elephantfbutte), which has a low retrospective performance (see ranking in Figure 7 and hydrograph in
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Figure 9, panel a), but a relatively high goodness of fit metrics in the forecast short lead times (Table 3
and hydrograph at Figure 9, panel b (short range, while medium and long range are available in
additional material at Figure A5). In this case, we note that elephantbutte has 15 lakes upstream and
significant diversions in the basin; and 81% of the basin is gauged, which means assimilation is a key
factor in achieving an NSE = 0.75 in early lead times across all forecast cycles in this basin (Table 4).
For longer lead times, conversely, the effects of assimilation vanish, and we assist to a rapid decrease in
performance at longer lead times (Table 4 and medium- and long-range hydrographs for elephantbutte in
AX3). Table 4 indicates that more often, simulated reservoir inflows perform worse in the retrospective
and better in the forecast than the opposite case. These reservoirs also have a considerable amount of
assimilation upstream, proving the effectiveness of nudging to improve performance, at least for some
of the cycles.
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Figure 8. NWM simulated reservoir inflows into Navajo Dam: (a) shows the NWM retrospective
simulation (v1.2 in blue) against observations (black) for a 5-year period, (b) shows the Navajo Dam
simulated reservoir inflows for a one-year forecast period, where the blue lines are the modeled flows
for all lead times and black is the BoR observations.
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This analysis suggests that certain reservoir inflows are reliable for the retrospective and forecast
periods, such as lemon, blr, sher, taylorpark, gbr, while others may be more suitable to provide information
only for a particular forecast cycle.

Table 4 also highlights that NWM performs relatively well in snow-driven watersheds, in both
retrospective and forecast simulations. In this analysis, the snow-driven watersheds tend to be small,
headwaters basins, with minimal upstream management, and well calibrated with a high percentage
of gauged (assimilated) area (e.g., taylorpark, blr, sher). In such basins, where the hydrology is tied to
seasonal accumulation and snow melt periods rather than convective storms, the NWM forecasts and
retrospectives can be useful for planning purposes such as those described in Table 2.
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4. Discussion

In general, we found that simulated inflows into reservoirs with upstream management have more
bias and lower NSE and r skill scores in the retrospective and forecast evaluation compared to those
in unregulated watersheds. Furthermore, as the number of upstream lakes increase, performance in
the forecast decays rapidly as a function of lead time. As explained in Section 2, the NWM currently
employs a simplified representation of management from upstream reservoirs and this is, as expected,
reflected in poorer performances both in the retrospective and in the forecast cycles for watersheds
that include a high number of regulated reservoirs and lakes upstream.

The performance of reservoirs by watershed size is highly correlated with the number of lakes:
most of the time a bigger water projects include multiple upstream projects/facilities and, consequently,
the NWM’s simulation of natural processes cannot capture these features.

As with the retrospective evaluation, we find that basins with partially calibrated drainage areas
generally have worse goodness of fit scores than fully calibrated across all forecast cycles, an indication
that regionalization within a large watershed may adversely impact performance. For example, if a
large watershed has multiple regionalization “clusters” within it, the parameters may be distributed in
a non-consistent manner across the different contributing basins to the total inflow.

In addition to that, the joined forecast and retrospective evaluation of reservoirs in Table 4 highlights
some important considerations regarding the role of assimilation and reinforces the discussion of
Figure 4: some reservoirs that have very poor performance in the retrospective and large assimilated
area are able to have much better performance in the short lead times (e.g., Pactola reservoir (ptr),
Echo reservoir (echoreservoir), Elephant Butte Dam (elephantbuttedam), Lovewell Dam (lvks)) presumably
thanks to correction provided by assimilation.

Finally, another important surprising result is the watersheds with a higher percentage of snow
precipitation performed better than the ones fed mostly by rain on both retrospective and forecast
evaluation. Although it is beyond the scope of this study to conduct specific experiments related to
snow-driven processes, it was still possible to state the fact that the current NWM has been better
optimized to reproduce the runoff characteristics in these snow-driven watersheds. Even if this can also
sum to the ability of the forcings to correctly depict solid vs. liquid precipitation, these results are very
consistent between retrospective and forecast, suggesting that rain-fed watersheds are more challenging
for the NWM to simulate, probably due to flashy behavior in the Midwestern U.S. plains compared to
many snow-driven watersheds in the western U.S. Further research into better meteorological forcings
and physics improvements are needed to address this issue.

5. Conclusions

In the absence of an observed total inflow into critical reservoirs, the NWM can provide an
understanding of the hydrological processes and patterns of the contributing watershed hydrology
from the retrospective simulations. The NWM also provides access to a CONUS-wide set of continuous
forecasts which use consistent model physics and meteorological forcings at near real-time, which can
serve as an additional set of information for water managers. As NWM evolves from its nascent stages,
there is a great need and effort to encourage participation in model improvements and evaluating
sources for data assimilation and parameter estimation. However, the ability to directly use the
forecasted inflows depends on several factors. The main factors driving inflow performance are the
precipitation dominance (snow vs. rain fed) and the influence of upstream management (number of
lakes upstream). Other physical characteristics were influential but not in a consistent and systematic
way. Thus, in headwater basins that are snow-driven, the NWM can provide a realistic depiction of the
flow profile.

This analysis also exposed short-comings with regard to the mixed performance in calibration
basins, which were expected to show improvements especially, in the retrospective. Given the
variability in observation quality as denoted in Section 2.2, it is difficult to attribute poor performance
strictly to the model; thus, future work will expand the number of reservoirs to include those from other



Water 2020, 12, 2897 21 of 29

agencies that have inflow observations. Overall, even if local engineers will still use their methods
for accounting total inflows in reservoirs of interest, in ungauged headwater basins, NWM provides
information that can supplement these calculations. Moreover, the hourly time resolution offered by
the NWM may be useful to operators and forecasters who otherwise might only have access to daily
information. With a growing community of researchers and local offices that are getting involved in
exploring the potential usage of NWM for water management, the hope is that this study will offer
good guidance for future work and applications.
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HRRR High−Resolution Rapid Refresh
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by NAs means that that particular reservoirs did not have any GAGES2 snow percentage 
information. 

Figure A3. Goodness of fit scores from the NWM v1.2 (dark grey) and NWM v2.0 (light
grey) retrospective total inflow evaluation, ordered by increasing snow percentage over total
precipitation.from top to bottom: r (a), relBias (b), NSE (c). When the snow percentages are replaced by
NAs means that that particular reservoirs did not have any GAGES2 snow percentage information.
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