Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Hydrologic and Hydraulic Modelling
2.2.1. Modelling Overview
2.2.2. Input Data
2.2.3. Model Set-Up and Parameterization
2.2.4. Model Calibration and Validation
2.2.5. Flooding Areas with and without Nature-Based Solutions
3. Results
3.1. Predictive Performance of the Models
3.2. Flood Hazard and Impact of Nature-Based Solutions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Population Prospects: Highlights. 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 15 August 2020).
- Piorr, A.; Ravetz, J.; Tosics, I. Peri-Urbanisation in Europe: Towards European Policies to Sustain Urban-Rural Futures. 2011. Available online: http://www.openspace.eca.ed.ac.uk/wp-content/uploads/2015/12/Peri_Urbanisation_in_Europe_printversion.pdf (accessed on 2 March 2018).
- Meija, A.I.; Moglen, G.E. Spatial distribution of imperviousness and the spacetime variability of rainfall, runoff generation, and routing. Water Resour. Res. 2010, 46, W07509. [Google Scholar]
- Jongman, B. Effective adaptation to rising flood risk. Nat. Commun. 2014, 9, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elga, S.; Jan, B.; Okke, B. Hydrological modelling of surbanised catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar]
- Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A.; Ferreira, C.S.S.; Kornegady, A.; Karimidastenaei, Z.; Mohamadi, F.; Stefanidis, S.; et al. Development of novel hybridized models for urban flood susceptibility mapping. Sci. Rep. 2020, 10, 12937. [Google Scholar] [CrossRef] [PubMed]
- Loperfideo, J.V.; Noe, G.B.; Jarnagic, S.T.; Hogan, D.M. Effects of distributed and centralised stormwater best management practices and land cover on urban stream hydrology at the catchment scale. J. Hydrol. 2014, 519, 2584–2595. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Shakesby, R.A.; Keizer, J.J.; Soares, D.; González-Pelayo, O.; Coelho, C.O.A.; Ferreira, A.J.D. Differences in overland flow, hydrophobicity and soil moisture dynamics between Mediterranean woodland types in a peri-urban catchment in Portugal. J. Hydrol. 2016, 533, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Braud, I.; Breil, P.; Thollet, F.; Laagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K. Evidence of the impact of surbanisation on the hydrological regime of a medium-sized periurban catchment in France. J. Hydrol. 2013, 485, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of surbanisation on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Leandro, J.; Schumann, A.; Pfister, A. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. J. Hydrol. 2016, 535, 356–365. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Steenhuis, T.S.; Ferreira, A.J.D. Effect of Peri-urban Development and Lithology on Streamflow in a Mediterranean Catchment. Land Degrad. Dev. 2018, 29, 1141–1153. [Google Scholar] [CrossRef]
- GebreEgziabher, M.; Demissie, Y. Modeling Urban Flood Inundation and Recession Impacted by Manholes. Water 2020, 12, 1160. [Google Scholar] [CrossRef] [Green Version]
- Cuny, F.C. Living with floods: Alternatives for riverine flood mitigation. Land Use Policy 1991, 8, 331–342. [Google Scholar] [CrossRef]
- Kalantari, Z.; Ferreira, C.S.S.; Walsh, R.P.D.; Ferreira, A.J.D.; Destouni, G. Urbanization development under climate change: Hydrological responses in a peri-urban Mediterranean catchment. Land Degrad. Dev. 2017, 28, 2207–2221. [Google Scholar] [CrossRef] [Green Version]
- Collentine, D.; Futter, M.N. Realising the potential of natural water retention measures in catchment flood management: Trade-offs and matching interests. J. Flood Risk Manag. 2016, 11, 76–84. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Short, C.; Clarke, L.; Carnelli, F.; Uttley, C.; Smith, B. Capturing the multiple benefits associated with nature-based solutions: Lessons from a natural flood management project in the Cotswolds, UK. Land Degrad. Dev. 2018, 30, 241–252. [Google Scholar] [CrossRef]
- Brown, R.R.; Keath, N.; Wong, T.H. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Kalantari, Z. The Blauzone Rheintal approach from a natural hazard perspective—Challenges to establish effective flood defence management programs. In Nature-Based Flood Risk Management in Private Land—Disciplinary Perspectives on a Muldisciplinary Challenge; Hartmann, T., Slaviková, L., McCarthy, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 161–167. ISBN 978-3-030-23841-4. [Google Scholar]
- Sharifi, A. Urban form resilience: A meso-scale analysis. Cities 2019, 93, 238–252. [Google Scholar] [CrossRef]
- Brillinger, M.; Dehnhardt, A.; Schwarze, R.; Albert, C. Exploring the uptake of nature-based measures in flood risk management: Evidence from German federal states. Environ. Sci. Policy 2020, 110, 14–23. [Google Scholar] [CrossRef]
- Watkin, L.J.; Ruangpan, L.; Vojinovic, Z.; Weesakul, S.; Torres, A.S. A framework for assessing benefits of implemented nature-based solution. Sustainability 2019, 11, 6788. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, Z.; Ferreira, C.S.; Deal, B.; Destouni, G. Nature-based solutions for meeting environmental and socioeconomic challenges in land management and development. Land Degrad. Dev. 2019, 31, 1867–1870. [Google Scholar] [CrossRef]
- World Bank. Implementing Nature-Based Flood Protection Principles and Implementation Guidance. 2017. Available online: http://documents1.worldbank.org/curated/en/739421509427698706/pdf/120735-REVISED-PUBLIC-Brochure-Implementing-nature-based-flood-protection-web.pdf (accessed on 20 April 2020).
- Caparros-Martinez, J.L.; Milan-Garcia, J.; Rueda-Lopez, N.; de Pablo-Valenciano, J. Green infrastructure and water: And analyses of global research. Water 2020, 12, 1760. [Google Scholar] [CrossRef]
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-based solutions as enablers of circularity in water systems: A review on assessment methodologies, tools and indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
- Davis, M.; Naumann, S. Making the Case for Sustainable Urban Drainage Systems as a Nature-Based Solution to Urban Flooding. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 123–138, 337. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.S.S.; Walsh, R.P.D.; Kalantari, Z.; Ferreira, A.J.D. Impact of Land-Use Changes on Spatiotemporal Suspended Sediment Dynamics within a Peri-Urban Catchment. Water 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- INMG—Instituto Nacional de Meteorologia e Geofísica. 1941–2000. Anuário climatológico de Portugal. I Parte, Continente, Açores e Madeira—Observações de Superfície; INMG: Lisbon, Portugal. (In Portuguese)
- Ferreira, C.S.S.; Walsh, R.P.D.; Blake, W.H.; Kikuchi, R.; Ferreira, A.J.D. Temporal dynamics of sediment sources in an urbanizing Mediterranean catchment. Land Degrad. Dev. 2017, 28, 2354–2369. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Nadal-Romero, E.; Gonzalez-Hidalgo, J.C.; Albaladejo, J.; Andreu, V.; Barhi, H.; Bernal, S.; Biddoccu, M.; Bienes, R.; Campo, J.; et al. Relationship of weather types on the seasonal and spatial variability of rainfall, runoff and sediment yield in the western Mediterranean basin. Atmosphere 2020, 11, 609. [Google Scholar] [CrossRef]
- Knebl, M.R.; Yang, Z.-L.; Hutchison, K.; Maidment, D.R. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manag. 2005, 75, 325–336. [Google Scholar] [CrossRef]
- Thakur, B.; Parajuli, R.; Kalra, A.; Ahmad, S.; Gupta, R. Coupling HEC-RAS and HEC-HMS in Precipitation Runoff Modelling and Evaluating Flood Plain Inundation Map. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 240–251. Available online: https://digitalscholarship.unlv.edu/fac_articles/450 (accessed on 22 September 2018).
- Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: Case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019, 78, 586. [Google Scholar] [CrossRef]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.-Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464–465, 127–139. [Google Scholar] [CrossRef]
- Costabile, P.; Costanzo, C.; Ferraro, D.; Macchione, F.; Petaccia, G. Performances of the New HEC-RAS Version 5 for 2-D Hydrodynamic-Based Rainfall-Runoff Simulations at Basin Scale: Comparison with a State-of-the Art Model. Water 2020, 12, 2326. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers (USACE). HEC-HMS 4.2 Modeling Users Manual. 2000. Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.2.pdf (accessed on 31 July 2020).
- Oleyiblo, J.O.; Li, Z.-J. Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China. Water Sci. Eng. 2010, 3, 14–22. [Google Scholar]
- U.S. Army Corps of Engineers (USACE). HEC-RAS 5.0 2D Modeling Users Manual. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%202D%20Modeling%20Users%20Manual.pdf (accessed on 31 July 2020).
- Geravand, F.; Hosseini, S.M.; Ataie-Ashtiani, B. Influence of river cross-section data resolution on flood inundation modeling: Case study of Kashkan river basin in western Iran. J. Hydrol. 2020, 584, 124743. [Google Scholar] [CrossRef]
- Afshari, S.; Tavakoly, A.A.; Rajib, M.A.; Zheng, X.; Follum, M.L.; Omranian, E.; Fekete, B.M. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. J. Hydrol. 2018, 556, 539–556. [Google Scholar] [CrossRef]
- Ezzine, A.; Saidi, S.; Hermassi, T.; Kammessi, I.; Darragi, F.; Rajhi, H. Flood mapping using hydraulic modeling and Sentinel-1 image: Case study of Medjerda Basin, northern Tunisia. Egypt. J. Remote Sens. Space Sci. in press. [CrossRef]
- Brandão, C.; Rodrigues, R.; Costa, J.P. Análise de fenómenos extremos precipitações intenses em Portugal Continental. Direcção dos Serviçõs de Recursos Hídricos. 2001. Available online: https://snirh.apambiente.pt/snirh/download/relatorios/relatorio_prec_intensa.pdf (accessed on 1 October 2019). (In Portuguese).
- Ferreira, C.S.S.; Ferreira, A.J.D.; de Lima, J.L.M.P.; Nunes, J.P. Assessment of surface hydrologic properties on a small urbanized mediterranean basin: Experimental design and first results. J. Land Manag. Food Environ. 2011, 62, 59–64. [Google Scholar]
- Ferreira, C.S.S.; Walsh, R.P.D.; Steenhuis, T.S.; Shakesby, R.A.; Nunes, J.P.N.; Coelho, C.O.A.; Ferreira, A.J.D. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment. J. Hydrol. 2015, 525, 249–263. [Google Scholar] [CrossRef] [Green Version]
- USDA. Urban Hydrology for small watersheds. In Technical Release 55; United States Department of Agriculture: Washington, DC, USA, 1986. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf (accessed on 6 April 2020).
- Shaw, E.M. Unit hydrograph method in UK flood studies. In Encyclopedia of Hydrology and Lakes. Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill Inc.: New York, NY, USA, 1988. [Google Scholar]
- Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models, part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gabellani, D.; Silvestro, F.; Rudari, R.; Boni, G. General Calibration Methodology for Combined Horton-SCS Infiltration Scheme in Flash Flood Modeling. Nat. Hazards Earth Syst. Sci. 2008, 8, 1317–1327. [Google Scholar] [CrossRef]
- Mediero, L.; Garrote, L.; Martín-Carrasco. Probabilistic calibration of a distributed hydrological model for flood forecasting. Hydrol. Sci. J. 2011, 56, 1129–1149. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Muñoz-Carpena, R. Predictive ability of hydrological models: Objective assessment of goodness-of-fit with statistical significance. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Jeong, J.; Kannan, N.; Arnold, J. Development and Integration of Sub-hourly Rainfall–Runoff Modeling Capability Within a Watershed Model. Water Resour. Manag. 2010, 24, 4505–4527. [Google Scholar] [CrossRef]
- Yuan, Y.; Mitchell, J.K.; Hirschi, M.C.; Cooke, R.A.C. Modified SCS Curve Number Method for Predicting Subsurface Drainage Flow. Trans. ASABE 2001, 44, 1673–1682. [Google Scholar] [CrossRef]
- McGrath, H.; Stefanakis, E.; Nastev, M. Sensitivity analysis of flood damage estimates: A case study in Fredericton, New Brunswick. Int. J. Disaster Risk Red. 2015, 14, 379–387. [Google Scholar] [CrossRef]
- Garrote, J.; Alvarenga, F.M.; Díez-Herrero. Quantification of flash flood economic risk using utra-detailed stage-damage funciotns and 2-D hydraulic models. J. Hydrol. 2016, 541, 611–625. [Google Scholar] [CrossRef]
- Morris, J.; Hess, T.M.; Posthumus, H. Agriculture’s role in flood adaptation and mitigation—Policy issues and approaches. In Sustainable Management of Water Resources in Agriculture; OECD: Paris, France, 2010; Available online: http://www.oecd.org/water (accessed on 4 September 2019).
- Li, P.; Sheng, M.; Yang, D.; Tang, L. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences. Ecol. Indic. 2019, 107, 105642. [Google Scholar] [CrossRef]
- Metcalfe, P.; Beven, K.; Hankin, B.; Lamb, R. A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29 km2 scale catchment in the United Kingdom. Hydrol. Process. 2017, 31, 1734–1748. [Google Scholar] [CrossRef] [Green Version]
- Klijn, F.; van Buuren, M.; van Rooij, S.A. Flood-risk Management Strategies for an Uncertain Future: Living with Rhine River Floods in The Netherlands? AMBIO A J. Hum. Environ. 2004, 33, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Defra 2005. Making Space for Water. Taking Forward a New Government Strategy for Flood and Coastal Erosion Risk Management in England. Available online: https://www.scribd.com/document/88816459/2005-Making-Space-for-Water-DEFRA (accessed on 5 October 2020).
- Hartmann, T.; Slavikova, L.; McCarthy, S. Nature-based solutions in flood risk management. In Nature-Based Flood Risk Management on Private Land; Hartmann, T., Slavikova, L., McCarthy, S., Eds.; Springer: Cham, Switzerland, 2019; Chapter 1, 3–9; p. 224. Available online: https://link.springer.com/content/pdf/10.1007/978-3-030-23842-1.pdf (accessed on 8 July 2020).
- Holstead, K.L.; Kenyon, W.; Rouillard, J.J.; Hopkins, J.; Galán-Díaz, C. Natural flood management from the farmer’s perspective: Criteria that affect uptake. J. Flood Risk Manag. 2017, 10, 205–218. [Google Scholar] [CrossRef]
- IFMT, 2012. Integrated Flood Management Tool Series No. 13. Conservation and restoration of rivers and floodplains. Issue 13. Available online: https://library.wmo.int/doc_num.php?explnum_id=7332 (accessed on 9 July 2020).
- Opperman, J.J.; Galloway, G.E.; Fargione, J.; Mount, J.; Richter, B.D.; Secchi, S. Sustainable floodplains through large-scale reconnection to rivers. Science 2009, 326, 1487–1488. [Google Scholar] [CrossRef] [PubMed]
- Peña-Angulo, D.; Nadal-Romero, E.; Gonzalez-Hidalgo, J.C.; Albaladejo, J.; Andreu, V.; Bagarello, V.; Barhi, H.; Batalla, R.J.; Bernal, S.; Gienes, R.; et al. Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J. Hydrol. 2019, 571, 390–405. [Google Scholar] [CrossRef] [Green Version]
- Ruangpan, L.; Vojnovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobiano, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Ourloglou, O.; Stefanidis, K.; Dimitrou, E. Asssessing nature-based and classical engineering solutios for flood-risk reduction in urban streams. J. Ecol. Eng. 2020, 21, 46–56. [Google Scholar] [CrossRef]
- Liquete, C.; Udias, A.; Conte, G.; Grizzeti, B.; Masi, F. Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef]
Storm Event n. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 13/02/2011 | 15/02/2011 | 18–19/02/2011 | 30–31/05/2011 | 14/11/2011 | 23/09/2012 | 14/12/2012 | 08–09/03/2013 | |||||||||
Rainfall Duration (h) | 4.6 | 3.2 | 5.4 | 1.3 | 4.7 | 7.8 | 19.6 | 15.9 | |||||||||
Rainfall (mm) | 11.0 | 9.2 | 9.8 | 4.5 | 10.3 | 1.7 | 26.8 | 29.2 | |||||||||
Imax (mm/h) | 11.5 | 19.7 | 5.8 | 6.8 | 15.1 | 4.3 | 3.7 | 18.2 | |||||||||
Runoff Properties | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | SR (mm) | PD (L/s) | |
Catchment | ESAC | 0.38 | 707 | 0.56 | 1016 | 0.63 | 728 | 0.71 | 1912 | 0.51 | 891 | 0.01 | 37 | 1.35 | 920 | 2.21 | 2479 |
Upstream Sub-catchments | Drable | 0.22 | 394 | 0.21 | 446 | 0.40 | 393 | 0.28 | 1107 | 0.33 | 457 | 0.01 | 32 | 0.99 | 524 | 0.87 | 976 |
Covões | 0.01 | 12 | 0.02 | 67 | 0.03 | 17 | 0.04 | 186 | 0.00 | 76 | 0.00 | 26 | 0.04 | 53 | 0.00 | 25 | |
Esp. Santo | 0.04 | 50 | 0.03 | 51 | 0.03 | 52 | 0.03 | 45 | 0.01 | 262 | 0.00 | 9 | 0.07 | 57 | 0.10 | 85 | |
Quinta | 0.04 | 61 | 0.07 | 129 | 0.10 | 140 | 0.04 | 111 | 0.03 | 85 | 0.00 | 15 | 0.05 | 87 | 0.25 | 293 |
ESAC | Drable | Covões | Quinta | Esp. Santo | |
---|---|---|---|---|---|
Nash–Sutcliffe Efficiency (NSE) | 0.91 | 0.75 | −0.12 | 0.23 | −0.31 |
Root Mean Square Error (RMSE) | 0.08 | 0.07 | 0.01 | 0.03 | 0.02 |
Mean Absolute Error (MAE) | 0.07 | 0.05 | 0.01 | 0.02 | 0.02 |
Coefficient of Determination (R2) | 0.93 | 0.77 | 0.46 | 0.45 | 0.72 |
Stream Gauge Station | ESAC | Drable | Covões | Quinta | Esp. Santo | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall Event no. | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
NSE | 0.73 | 0.79 | 0.17 | 0.31 | 0.50 | 0.64 | −0.65 | 0.03 | −0.15 | −2.53 | 0.41 | 0.07 | 0.34 | 0.62 | −0.59 |
RMSE | 0.11 | 0.10 | 0.08 | 0.10 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.05 | 0.01 | 0.06 | 0.00 |
MAE | 0.09 | 0.08 | 0.07 | 0.06 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.03 | 0.00 | 0.05 | 0.00 |
R2 | 0.82 | 0.82 | 0.67 | 0.48 | 0.64 | 0.68 | 0.49 | 0.57 | 0.73 | 0.26 | 0.43 | 0.24 | 0.35 | 0.77 | 0.34 |
Calibration Event | Validation Events | |||
---|---|---|---|---|
1 | 2 | 3 | ||
NSE | 0.88 | 0.86 | 0.35 | −3.39 |
RMSE | 0.06 | 0.03 | 0.09 | 0.07 |
MAE | 0.05 | 0.02 | 0.07 | 0.07 |
R2 | 0.95 | 0.88 | 0.80 | 0.34 |
Gauging Stations | Recurrence Period (years) | |||
---|---|---|---|---|
10 | 20 | 50 | 100 | |
ESAC | 6.10 | 7.61 | 9.91 | 11.82 |
Drable | 4.40 | 5.43 | 6.90 | 8.07 |
Covões | 0.32 | 0.47 | 0.71 | 0.92 |
Quinta | 1.02 | 1.31 | 1.79 | 2.23 |
Espírito Santo | 0.35 | 0.41 | 0.51 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S.Ferreira, C.; Mourato, S.; Kasanin-Grubin, M.; J.D. Ferreira, A.; Destouni, G.; Kalantari, Z. Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban Catchment. Water 2020, 12, 2893. https://doi.org/10.3390/w12102893
S.Ferreira C, Mourato S, Kasanin-Grubin M, J.D. Ferreira A, Destouni G, Kalantari Z. Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban Catchment. Water. 2020; 12(10):2893. https://doi.org/10.3390/w12102893
Chicago/Turabian StyleS.Ferreira, Carla, Sandra Mourato, Milica Kasanin-Grubin, António J.D. Ferreira, Georgia Destouni, and Zahra Kalantari. 2020. "Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban Catchment" Water 12, no. 10: 2893. https://doi.org/10.3390/w12102893