Potential Effects of the COVID-19 Pandemic through Changes in Outbound Tourism on Water Demand: The Case of Liège (Belgium)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Half a Million Passengers at Brussels Airport in July, -80% compared to 2019. Available online: https://www.brusselsairport.be/pressroom/half-a-million-passengers-at-brussels-airport-in-july--80-compared-to-2019/ (accessed on 9 August 2020).
- Eurostat—Data Explorer. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tour_dem_ttmd&lang=en (accessed on 11 August 2020).
- Eugenio-Martin, J.L.; Campos-Soria, J.A. Climate in the region of origin and destination choice in outbound tourism demand. Tour. Manag. 2010, 31, 744–753. [Google Scholar] [CrossRef]
- Balacco, G.; Totaro, V.; Iacobellis, V.; Manni, A.; Spagnoletta, M.; Piccinni, A.F. Influence of COVID-19 Spread on Water Drinking Demand: The Case of Puglia Region (Southern Italy). Sustainability 2020, 12, 5919. [Google Scholar] [CrossRef]
- WatEner. Water Consumption and Demand Forecasting during COVID-19 Crisis. Available online: http://watener.com/index.php/water-consumption-and-demand-forecasting-during-covid-19-crisis/ (accessed on 7 August 2020).
- Roidt, M.; Chini, C.M.; Stillwell, A.S.; Cominola, A. Unlocking the impacts of COVID-19 lockdowns: Changes in thermal electricity generation water footprint and virtual water trade in Europe. Environ. Sci. Technol. Lett. 2020. [Google Scholar] [CrossRef]
- de Haas, M.; Faber, R.; Hamersma, M. How COVID-19 and the Dutch ‘intelligent lockdown’ change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020, 6, 100150. [Google Scholar] [CrossRef]
- Toth, E.; Bragalli, C.; Neri, M. Assessing the significance of tourism and climate on residential water demand: Panel-data analysis and non-linear modelling of monthly water consumptions. Environ. Model. Softw. 2018, 103, 52–61. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Hall, C.M.; Ceron, J.P.; Dubois, G.; Lehmann, L.V.; Scott, D. Tourism and water use: Supply, demand, and security. An international review. Tour. Manag. 2012, 33, 1–15. [Google Scholar] [CrossRef]
- Hof, A.; Schmitt, T. Urban and tourist land use patterns and water consumption: Evidence from Mallorca, Balearic Islands. Land Use Policy 2011, 28, 792–804. [Google Scholar] [CrossRef]
- Calianno, M.; Milano, M.; Reynard, E. Monitoring Water Use Regimes and Density in a Tourist Mountain Territory. Water Resour. Manag. 2018, 32, 2783–2799. [Google Scholar] [CrossRef] [Green Version]
- Lootvoet, M.; Roddier-Quefelec, C. MEDSTAT II: “Water and Tourism” Pilot Study; European Commission: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Wong, J.S.; Zhang, Q.; Chen, Y.D. Statistical modeling of daily urban water consumption in Hong Kong: Trend, changing patterns, and forecast. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Mergoupis, T.; Steuer, M. Holiday taking and income. Appl. Econ. 2003, 35, 269–284. [Google Scholar] [CrossRef]
- Bich-Ngoc, N.; Teller, J. A review of residential water consumption determinants. In Computational Science and Its Applications—ICCSA 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; pp. 685–696. [Google Scholar] [CrossRef]
- Balling, R.C.; Gober, P. Climate variability and residential water use in the city of Phoenix, Arizona. J. Appl. Meteorol. Climatol. 2007, 46, 1130–1137. [Google Scholar] [CrossRef]
- Maidment, D.R.; Miaou, S.-P.; Crawford, M.M. Transfer function models of daily urban water use. Water Resour. Res. 1985, 21, 425–432. [Google Scholar] [CrossRef]
- Gato, S.; Jayasuriya, N.; Roberts, P. Temperature and rainfall thresholds for base use urban water demand modelling. J. Hydrol. 2007, 337, 364–376. [Google Scholar] [CrossRef]
- Syme, G.J.; Shao, Q.; Po, M.; Campbell, E. Predicting and understanding home garden water use. Landsc. Urban. Plan. 2004, 68, 121–128. [Google Scholar] [CrossRef]
- House-Peters, L.; Pratt, B.; Chang, H. Effects of urban spatial structure, sociodemographics, and climate on residential water consumption in Hillsboro, Oregon. J. Am. Water Resour. Assoc. 2010, 46, 461–472. [Google Scholar] [CrossRef]
- Gerin, O.; Bleys, B.; De Cuyper, K. Seasonal variation of hot and cold water consumption in apartment buildings. In Proceedings of the CIB W062, 40th International Symposium on Water Supply and Drainage for Building, Sao Paulo, Brazil, 8–10 September 2014; pp. 1–9. Available online: http://www.sisconev.com.br/Uploads/CIB2014/Trab0128000015232014070_000000.docx (accessed on 11 October 2020).
- Rathnayaka, K.; Malano, H.; Maheepala, S.; George, B.; Nawarathna, B.; Arora, M.; Roberts, P. Seasonal demand dynamics of residential water end-uses. Water 2015, 7, 202–216. [Google Scholar] [CrossRef] [Green Version]
- CILE. Rapport Annuel 2019. 2020. Available online: https://www.cile.be/Portals/0/Documents/General/CILE_RA_2020_WEB.pdf (accessed on 24 August 2020).
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; van Aalst, M.; Boucher, O.; Drouin, A.; Haustein, K.; Kreienkamp, F.; van Oldenborgh, G.J.; Otto, F.E.L.; Ribes, A.; Robin, Y.; et al. Human contribution to the record-breaking June and July 2019 heat waves in Western Europe. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Summer of 2018 Is the Hottest in Almost 200 Years|VRT NWS: News. Available online: https://www.vrt.be/vrtnws/en/2018/08/31/summer-of-2018-is-the-hottest-in-almost-200-years/ (accessed on 2 September 2020).
Parameters | Units | Estimates | Standard Errors | p-Values |
---|---|---|---|---|
Intercept 1 | −1573.92 | 4133.30 | 0.7034 | |
Year average | 1.02 | 0.04 | <0.001 | |
Intercept 2 | 3897.08 | 323.54 | <0.001 | |
Total outbound trips | million | −3162.43 | 237.79 | <0.001 |
School holiday—Ascension Day | −751.58 | 2001.53 | 0.7073 | |
School holiday—Autumn holidays | −3978.63 | 935.00 | <0.001 | |
School holiday—Carnival holidays | 1138.28 | 1010.68 | 0.2602 | |
School holiday—Christmas holidays | −1359.35 | 718.02 | 0.0585 | |
School holiday—Easter holidays | 144.88 | 646.81 | 0.8228 | |
Intercept 3 | −615.57 | 156.73 | <0.001 | |
Δ Mean temperature | °C | 101.23 | 64.35 | 0.1158 |
Δ Mean temperature square | °C2 | 35.92 | 8.84 | <0.001 |
Δ Max temperature previous day (d − 1) | °C | 222.20 | 57.79 | <0.001 |
Δ Number of previous days without rainfall | days | 604.10 | 189.82 | 0.0015 |
Δ Number of previous consecutive days with max temperature above 25 °C | days | 639.62 | 76.56 | <0.001 |
Δ Number of previous consecutive days with min temperature below −4 °C | days | 214.12 | 131.31 | 0.1031 |
Intercept 4 | 2886.51 | 481.06 | <0.001 | |
February | −93.27 | 567.05 | 0.8694 | |
March | −346.09 | 569.24 | 0.5433 | |
April | −832.86 | 552.85 | 0.1321 | |
May | −1681.85 | 563.18 | 0.0029 | |
June | −1232.88 | 588.83 | 0.0364 | |
July | −1096.13 | 572.55 | 0.0557 | |
August | −3160.79 | 585.66 | <0.001 | |
September | −2875.64 | 583.85 | <0.001 | |
October | −2767.46 | 571.69 | <0.001 | |
November | −1324.15 | 570.11 | 0.0203 | |
December | −558.55 | 572.62 | 0.3294 | |
Tuesday | −1392.81 | 448.61 | 0.0019 | |
Wednesday | −2047.86 | 449.67 | <0.001 | |
Thursday | −2176.00 | 442.19 | <0.001 | |
Friday | −1311.03 | 450.23 | 0.0036 | |
Saturday | −3271.17 | 445.68 | <0.001 | |
Sunday | −1207.70 | 435.08 | 0.0056 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bich-Ngoc, N.; Teller, J. Potential Effects of the COVID-19 Pandemic through Changes in Outbound Tourism on Water Demand: The Case of Liège (Belgium). Water 2020, 12, 2820. https://doi.org/10.3390/w12102820
Bich-Ngoc N, Teller J. Potential Effects of the COVID-19 Pandemic through Changes in Outbound Tourism on Water Demand: The Case of Liège (Belgium). Water. 2020; 12(10):2820. https://doi.org/10.3390/w12102820
Chicago/Turabian StyleBich-Ngoc, Nguyen, and Jacques Teller. 2020. "Potential Effects of the COVID-19 Pandemic through Changes in Outbound Tourism on Water Demand: The Case of Liège (Belgium)" Water 12, no. 10: 2820. https://doi.org/10.3390/w12102820
APA StyleBich-Ngoc, N., & Teller, J. (2020). Potential Effects of the COVID-19 Pandemic through Changes in Outbound Tourism on Water Demand: The Case of Liège (Belgium). Water, 12(10), 2820. https://doi.org/10.3390/w12102820