Long-Term (2001–2020) Nutrient Transport from a Small Boreal Agricultural Watershed: Hydrological Control and Potential of Retention Ponds
Abstract
:1. Introduction
- Has nutrient transport out of the watershed changed in the long run, and can it be explained by changes in weather and hydrological conditions?
- Are there seasonal differences in nutrient transport relative to weather and hydrological conditions?
- How do constructed retention ponds affect nutrient and suspended solids transport from a small agricultural watershed to the recipient lake?
2. Materials and Methods
2.1. Study Area and the Constructed Pond System
2.2. Long-Term Nutrient and DOC Sampling and Laboratory Analyses
2.3. Data Analyses
3. Results
3.1. Annual Weather Conditions and Fluctuation of Nutrient Delivery 2001–2019
3.2. Seasonal Trends in Weather, Nutrient Concentrations, and Loading
3.3. Nutrient Retention of the Pond System
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puustinen, M.; Tattari, S.; Koskiaho, J.; Linjama, J. Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Tillage Res. 2007, 93, 44–55. [Google Scholar] [CrossRef]
- Ympäristö.fi. Available online: https://www.ymparisto.fi/fi-FI/Kartat_ja_tilastot/Vesistojen_kuormitus_ja_luonnon_huuhtouma (accessed on 18 June 2020).
- HELCOM. State of the Baltic Sea—Second HELCOM Holistic Assessment 2011–2016; Baltic Sea Environment Proceedings; HELCOM: Helsinki, Finland, 2018; p. 155. Available online: http://stateofthebalticsea.helcom.fi/wp-content/uploads/2018/07/HELCOM_State-of-the-Baltic-Sea_Second-HELCOM-holistic-assessment-2011-2016.pdf (accessed on 25 September 2020).
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Falloon, B.; Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci. Total Environ. 2010, 408, 5667–5687. [Google Scholar] [CrossRef]
- Mikkonen, S.; Laine, M.; Mäkelä, H.; Gregow, H.; Tuomenvirta, H.; Lahtinen, M.; Laaksonen, A. Trends in the average temperature in Finland, 1847–2013. Stoch. Environ. Res. Risk Assess. 2015, 29, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate Projections for Finland Under the RCP Forcing Scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- Veijalainen, N.; Lotsari, E.; Alho, P.; Vehviläinen, B.; Käyhkö, J. National scale assessment of climate change impacts on flooding in Finland. J. Hydrol. 2010, 391, 333–350. [Google Scholar] [CrossRef]
- Luomaranta, A.; Aalto, J.; Jylhä, K. Snow cover trends in Finland over 1961–2014 based on gridded snow depth observations. Int. J. Climatol. 2019, 39, 3147–3159. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, T.; Kortelainen, P.; Räike, A. Export of DOM from boreal catchments: Impacts of land use cover and climate. Biogeochemistry 2005, 76, 373–394. [Google Scholar] [CrossRef]
- Hildén, M.; Huhtala, A.; Koikkalainen, K.; Ojanen, M.; Grönroos, J.; Helin, J.; Isolahti, M.; Kaljonen, M.; Kangas, A.; Känkänen, H.; et al. Verotukseen Perustuva Ohjaus Maatalouden Ravinnepäästöjen Rajoittamisessa; Ympäristöministeriön raportteja 15; Ympäristöministeriö: Helsinki, Finland, 2007; pp. 1–72. (In Finnish) [Google Scholar]
- Mitikka, S. (Ed.) Nitraattidirektiivin täytäntöönpano Suomessa Raportointijakso 2012–2015; Suomen ympäristökeskuksen raportteja 1; Suomen ympäristökeskus: Helsinki, Finland, 2017; pp. 1–71. (In Finnish) [Google Scholar]
- Saunders, D.L.; Kalff, J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiology 2001, 443, 205–212. [Google Scholar] [CrossRef]
- Vymazal, J. The Use of Constructed Wetlands for Nitrogen Removal from Agricultural Drainage: A Review. Sci. Agric. Bohem. 2017, 48, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Dawson, R.W.; Murphy, K.L. The temperature dependency of biological denitrification. Water Res. 1972, 6, 71–83. [Google Scholar] [CrossRef]
- Song, K.; Hernandez, M.E.; Batson, J.A.; Mitsch, W.J. Long-term denitrification rates in created riverine wetlands and their relationship with environmental factors. Ecol. Eng. 2014, 72, 40–46. [Google Scholar] [CrossRef]
- Uusheimo, S.; Tulonen, T.; Aalto, S.L.; Arvola, L. Mitigating agricultural nitrogen load with constructed ponds in northern latitudes: A field study on sedimental denitrification rates. Agric. Ecosyst. Environ. 2018, 261, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Fink, D.F.; Mitsch, W.J. Seasonal and Storm Event Nutrient Removal by a Created Wetland in an Agricultural Watershed. Ecol. Eng. 2004, 23, 313–325. [Google Scholar] [CrossRef]
- Rücker, K.; Schrautzer, J. Nutrient retention function of a stream wetland complex–A high-frequency monitoring approach. Ecol. Eng. 2010, 36, 612–622. [Google Scholar] [CrossRef]
- Valkama, P.; Mäkinen, E.; Ojala, A.; Vahtera, H.; Lahti, K.; Rantakokko, K.; Vasander, H.; Nikinmaa, E.; Wahlroos, O. Seasonal variation in nutrient removal efficiency of a boreal wetland detected by high-frequency on-line monitoring. Ecol. Eng. 2017, 98, 307–317. [Google Scholar] [CrossRef]
- Wahlroos, O.; Valkama, P.; Mäkinen, E.; Ojala, A.; Vasander, H.; Väänänen, V.M.; Halonen, A.; Lindén, L.; Nummi, P.; Ahponen, H.; et al. Urban wetland parks in Finland: Improving water quality and creating endangered habitats. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 46–60. [Google Scholar] [CrossRef]
- Ruoho-Airola, T.; Hatakka, T.; Kyllönen, K.; Makkonen, U.; Porvari, P. Temporal trends in the bulk deposition and atmospheric concentration of acidifying compounds and trace elements in the Finnish Integrated Monitoring catchment Valkea-Kotinen during 1988–2011. Boreal Environ. Res. 2014, 19, 31–46. [Google Scholar]
- Van Meter, K.J.; Basu, N.B.; Veenstra, J.J.; Burras, C.L. The nitrogen legacy: Emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 2016, 11, 1–12. [Google Scholar] [CrossRef]
- Nieminen, M.; Sarkkola, S.; Hellsten, S.; Marttila, H.; Piirainen, S.; Sallantaus, T.; Lepistö, A. Increasing and Decreasing Nitrogen and Phosphorus Trends in Runoff from Drained Peatland Forests—Is There a Legacy Effect of Drainage or Not? Water Air Soil Pollut. 2018, 229. [Google Scholar] [CrossRef]
- Ekholm, P.; Rankinen, K.; Rita, H.; Räike, A.; Sjöblom, H.; Raateland, A.; Vesikko, L.; Bernal, J.E.C.; Taskinen, A. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985–2006. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- Räike, A.; Taskinen, A.; Knuuttila, S. Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water protection measures. AMBIO 2019, 49, 460–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldelli, G.; Soana, E.; Racchetti, E.; Vincenzi, F.; Fano, E.A.; Bartoli, M. Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agric. Ecosyst. Environ. 2015, 212, 253–262. [Google Scholar] [CrossRef]
- Arvola, L.; Einola, E.; Järvinen, M. Landscape properties and precipitation as determinants for high summer nitrogen load from boreal catchments. Landsc. Ecol. 2015, 30, 429–442. [Google Scholar] [CrossRef]
- Tikkanen, M.; Seppälä, M.; Heikkinen, O. Environmental properties and material transport of two rivulets in Lammi southern Finland. Fennia 1985, 163, 217–282. [Google Scholar]
- Uusheimo, S.; Tulonen, T.; Arvola, L.; Arola, H.; Linjama, J.; Huttula, T. Organic carbon causes interference with nitrate and nitrite measurements by UV/Vis spectrometers: The importance of local calibration. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Linjama, J.; Puustinen, M.; Koskiaho, J.; Tattari, S.; Kotilainen, H.; Granlund, K. Implementation of automatic sensors for continuous monitoring of runoff quantity and quality in small catchments. Agric. Food Sci. 2009, 18, 417–427. [Google Scholar] [CrossRef]
- Koskiaho, J.; Lepistö, A.; Tattari, S. On-line measurements provide more accurate estimates of nutrient loading: A case of the Yläneenjoki river basin, southwest Finland. Water Sci. Tech. 2010, 62, 115–122. [Google Scholar] [CrossRef]
- Tattari, S.; Koskiaho, J.; Kosunen, M.; Lepistö, A.; Linjama, J.; Puustinen, M. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010—Can the efficiency of undertaken water protection measures seen? Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [Green Version]
- Stålnacke, P.; Aakerøy, P.A.; Blicher-Mathiesen, G.; Iital, A.; Jansons, V.; Koskiaho, J.; Kyllmar, K.; Lagzdins, A.; Pengerud, A.; Povilaitis, A. Temporal trends in nitrogen concentrations and losses from agricultural catchments in the Nordic and Baltic countries. Agric. Ecosyst. Environ. 2014, 198, 94–103. [Google Scholar] [CrossRef]
- Saarela, I. Phosphorus in Finnish soils in the 1900s with particular reference to the ammonium acetate soil test. Agric. Food Sci. Finl. 2002, 11, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, R.; Närvänen, A.; Rasa, K.; Salo, T.; Koskiaho, J.; Puustinen, M.; Brax, A.; Erkkilä, E.; Vilhunen, S.; Joki-Heiskala, P.; et al. Active Wetlands–the Use of Chemical Amendments to Intercept Phosphate Runoffs in Agricultural Catchments; Final Report of the Active Wetlands Interreg IVA Project, MTT Report 92; MTT: Jokioinen, Finland, 2013; pp. 1–54. [Google Scholar]
- Finstad, A.G.; Andersen, T.; Larsen, S.; Tominaga, K.; Blumentrath, S.; de Wit, H.A.; Tømmervik, H.; Hessen, D.A. From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Nat. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garmo, Ø.A.; Skjelkvåle, B.L.; de Wit, H.A.; Colombo, L.; Curtis, C.; Fölster, J.; Hoffmann, A.; Hruška, J.; Høgåsen, T.; Jeffries, D.S.; et al. Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut. 2014, 225, 1880. [Google Scholar] [CrossRef] [Green Version]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; de Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nat. Lett. 2007, 450. [Google Scholar] [CrossRef] [PubMed]
- Strand, J.A.; Weisner, S.E.B. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape—Experiences from Sweden. Ecol. Eng. 2013, 56, 14–25. [Google Scholar] [CrossRef]
- Koskiaho, J. Retention Performance and Hydraulic Design of Constructed Wetlands Treating Runoff from Arable Land. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2006. [Google Scholar]
- Braskerud, B.C. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecol. Eng. 2002, 18, 351–370. [Google Scholar] [CrossRef]
- Puustinen, M.; Koskiaho, J.; Jormola, J.; Järvenpää, L.; Karhunen, A.; Mikkola-Roos, M.; Pitkänen, J.; Riihimäki, J.; Svensberg, M.; Vikberg, P. Maatalouden Monivaikutteisten Kosteikkojen Suunnittelu Ja Mitoitus; Suomen ympäristö: Vammala, Finland, 2007; p. 21. ISBN 978-952-11-2720-5. [Google Scholar]
- Berninger, K.; Koskiaho, J.; Tattari, S. Constructed wetlands in Finnish agricultural environments: Balancing between effective water protection, multi-functionality and socio-economy. J. Water Land Dev. 2012, 17, 19–29. [Google Scholar] [CrossRef]
- Vuorenmaa, J.; Rekolainen, S.; Lepistö, A.; Kenttämies, K.; Kauppila, P. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s. Environ. Monit. Assess. 2002, 76, 213–248. [Google Scholar] [CrossRef]
- Shogren, A.J.; Zarnetske, J.P.; Abbott, B.W.; Iannucci, F.; Bowden, W.B. We cannot shrug off the shoulder seasons: Addressing knowledge and data gaps in an Arctic headwater. Environ. Res. Lett. 2020, 15, 104027. [Google Scholar] [CrossRef]
Variable | p-Value | Sen´s Slope |
---|---|---|
Stream water temperature (°C) | 0.783 | −0.003 |
Air temperature (°C) | 0.058 | 0.061 |
Stream discharge (m3 s−1) | 0.489 | 0.000 |
Precipitation (mm) | 1.000 | −0.233 |
Mean snow (cm) | 0.456 | −0.369 |
Max. snow (cm) | 0.454 | −0.563 |
Tot-N (µg L−1) | 0.008 | 42.574 |
Tot-P (µg L−1) | 0.001 | 1.030 |
NO3-N (µg L−1) | 0.001 | 53.458 |
NH4-N (µg L−1) | 0.298 | 2.124 |
PO4-P (µg L−1) | <0.0001 | 0.712 |
DOC (µg L−1) | 0.836 | −0.013 |
Tot-N (kg ha−1 a−1) | 0.164 | 0.130 |
Tot-P (kg ha−1 a−1) | 0.013 | 0.002 |
NO3-N (kg ha−1 a−1) | 0.041 | 0.129 |
NH4-N (kg ha−1 a−1) | 0.238 | 0.006 |
PO4-P (kg ha−1 a−1) | 0.001 | 0.002 |
DOC (kg C ha−1 a−1) | 0.836 | 0.068 |
Season | Concentration | p-Value | Sen’s Slope | Loading | p-Value | Sen’s Slope |
---|---|---|---|---|---|---|
Winter | Tot-N (µg L−1) | 0.034 | 75.889 | (kg day−1) | 0.049 | 0.724 |
Spring | 0.055 | 43.370 | 0.288 | 0.207 | ||
Summer | 0.186 | 29.148 | 0.783 | −0.032 | ||
Autumn | 0.058 | 46.397 | 0.534 | 0.246 | ||
Winter | Tot-P (µg L−1) | 0.013 | 1.098 | (kg day−1) | 0.058 | 0.010 |
Spring | 0.319 | 0.426 | 0.586 | 0.003 | ||
Summer | 0.002 | 1.231 | 0.332 | 0.003 | ||
Autumn | 0.093 | 0.650 | 0.298 | 0.004 | ||
Winter | NO3-N (µg L−1) | 0.034 | 72.238 | (kg day−1) | 0.041 | 0.646 |
Spring | 0.007 | 52.495 | 0.055 | 0.312 | ||
Summer | 0.211 | 23.436 | 0.945 | −0.026 | ||
Autumn | 0.005 | 47.508 | 0.447 | 0.229 | ||
Winter | NH4-N (µg L−1) | 0.298 | 2.427 | (kg day−1) | 0.058 | 0.037 |
Spring | 0.501 | 1.040 | 0.924 | 0.003 | ||
Summer | 0.172 | 1.757 | 0.534 | 0.003 | ||
Autumn | 0.836 | −0.341 | 0.730 | 0.008 | ||
Winter | PO4-P (µg L−1) | 0.008 | 0.442 | (kg day−1) | 0.016 | 0.003 |
Spring | 0.010 | 0.607 | 0.040 | 0.003 | ||
Summer | 0.000 | 0.621 | 0.034 | 0.002 | ||
Autumn | 0.001 | 0.440 | 0.068 | 0.002 | ||
Winter | ON (µg L−1) | 0.679 | −3.476 | (kg day−1) | 0.489 | 0.051 |
Spring | 0.319 | −7.112 | 0.677 | −0.021 | ||
Summer | 0.945 | −0.993 | 0.581 | −0.012 | ||
Autumn | 0.401 | −12.183 | 0.890 | −0.010 | ||
Winter | OP (µg L−1) | 0.093 | 0.498 | (kg day−1) | 0.049 | 0.006 |
Spring | 0.631 | −0.123 | 0.974 | 0.000 | ||
Summer | 0.013 | 0.731 | 0.581 | 0.001 | ||
Autumn | 0.363 | 0.400 | 0.447 | 0.002 | ||
Winter | DOC (mg L−1) | 0.783 | 0.053 | (kg day−1) | 0.332 | 1.154 |
Spring | 0.773 | −0.020 | 0.924 | −0.081 | ||
Summer | 0.575 | −0.052 | 0.489 | −0.320 | ||
Autumn | 0.783 | −0.075 | 1.000 | 0.208 |
Variable | Unit | 1. Year | 2. Year | Summer 2013 | Summer 2014 |
---|---|---|---|---|---|
Water temperature | °C | 7.9 | 5.6 | 13.4 | 13.6 |
Stream discharge | m3 s−1 | 0.073 | 0.063 | 0.033 | 0.041 |
Tot-N | g ha−1 day−1 | 41.4 | 31.2 | 13.5 | 13.7 |
retention % | 4.8 | 1.9 | 8.6 | 4.6 | |
NO3-N | g ha−1 day−1 | 34.3 | 26.6 | 10.2 | 9.2 |
retention % | −0.1 | 1.8 | 6.3 | 8.2 | |
NH4-N | g ha−1 day−1 | 1.4 | 1.3 | 0.7 | 1.2 |
retention % | 13.7 | 22.0 | 14.1 | 26.4 | |
Tot-P | g h−1 day−1 | 0.77 | 0.42 | 0.34 | 0.46 |
retention % | 4.3 | 6.9 | 3.9 | 4.2 | |
PO4-P | g ha−1 day−1 | 0.20 | 0.11 | 0.07 | 0.06 |
retention % | 15.8 | −0.1 | 18.1 | −2.4 |
Variable | 2013 | 2014 | ||
---|---|---|---|---|
Year | Summer | Year | Summer | |
Load kg ha−1 day−1 | 0.33 | 0.15 | 0.17 | 0.24 |
Retention kg day−1 | 74 | 48 | 33 | 28 |
Retention % | 39 | 40 | 25 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uusheimo, S.; Tulonen, T.; Huotari, J.; Arvola, L. Long-Term (2001–2020) Nutrient Transport from a Small Boreal Agricultural Watershed: Hydrological Control and Potential of Retention Ponds. Water 2020, 12, 2731. https://doi.org/10.3390/w12102731
Uusheimo S, Tulonen T, Huotari J, Arvola L. Long-Term (2001–2020) Nutrient Transport from a Small Boreal Agricultural Watershed: Hydrological Control and Potential of Retention Ponds. Water. 2020; 12(10):2731. https://doi.org/10.3390/w12102731
Chicago/Turabian StyleUusheimo, Sari, Tiina Tulonen, Jussi Huotari, and Lauri Arvola. 2020. "Long-Term (2001–2020) Nutrient Transport from a Small Boreal Agricultural Watershed: Hydrological Control and Potential of Retention Ponds" Water 12, no. 10: 2731. https://doi.org/10.3390/w12102731
APA StyleUusheimo, S., Tulonen, T., Huotari, J., & Arvola, L. (2020). Long-Term (2001–2020) Nutrient Transport from a Small Boreal Agricultural Watershed: Hydrological Control and Potential of Retention Ponds. Water, 12(10), 2731. https://doi.org/10.3390/w12102731