Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Design
2.2. Study Area and Data
2.3. Deep Belief Network (DBN)
3. Results
3.1. Relationship between Meteorological Variables and Stream Water-Use Rate
3.2. Estimation of Stream Water-Use Rate
3.3. Estimation of Stream Water-Use Rate on Stream Water-Use Facilities
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H.; Chung, E.S.; Lee, B.; Kim, Y. Meteorological hazard risk assessment based on the detection of trends and abrupt changes in the precipitation characteristics of the Korea peninsula. Theoret. Appl. Climatol. 2017, 127, 305–326. [Google Scholar] [CrossRef]
- Abdulai, P.J.; Chung, E.S. Uncertainty assessment in drought severities for the Cheongmicheon watershed using multiple GCMs and the reliability ensemble averaging method. Sustainability 2019, 11, 4283. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.-H.; Lall, U.; Kim, S.-J. The unusual 2013–2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. Geophys. Res. Lett. 2016, 43, 8534–8544. [Google Scholar] [CrossRef]
- Sung, J.H.; Chung, E.S. Development of streamflow drought severity-duration-frequency curves using the threshold level method. Hydrol. Earth Syst. Sci. 2014, 18, 3341–3351. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.H.; Chung, E.S.; Shahid, S. Reliability–resiliency–vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustainability 2018, 10, 3043. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H.; Burns, W.C.G.; Chalecki, E.L.; Cohen, M.; Cushing, K.K.; Mann, A.S.; Reyes, R.; Wolff, G.H.; Wong, A.K. The World’s Water 2002–2003: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2002; ISBN 978-1-55963-949-1. [Google Scholar]
- Cooley, H.; Fulton, J.; Gleick, P.H. Water for Energy: Future Water Needs for Electricity in the Intermountain West; The Pacific Institute: Oakland, CA, USA, 2011; pp. 1–63. [Google Scholar]
- Wutich, A.; White, A.C.; White, D.D.; Larson, K.L.; Brewis, A.; Roberts, C. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions. Hydrol. Earth Syst. Sci. 2014, 18, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Brooks, D.B.; Holtz, S. Water soft path analysis: From principles to practice. Water Int. 2009, 34, 158–169. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Chang, H.; Chung, E.-S. Resident perceptions of urban stream restoration and water quality in South Korea. River Res. Appl. 2018, 34, 481–492. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Vasiliades, L.; Loukas, A. Hydrological response to meteorological drought using the Palmer drought indices in Thessaly, Greece. Desalination 2009, 237, 3–21. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; MIT Press: Cambridge, MA, USA, 2006; pp. 153–160. [Google Scholar]
- Ranzato, M.; Poultney, C.; Chopra, S.; LeCun, Y. Efficient Learning of Sparse Representations with an Energy-Based Model. In Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; MIT Press: Cambridge, MA, USA, 2006; pp. 1137–1144. [Google Scholar]
- Partal, T.; Cigizoglu, H.K. Estimation and forecasting of daily suspended sediment data using wavelet–neural networks. J. Hydrol. 2008, 358, 317–331. [Google Scholar] [CrossRef]
- Barua, S.; Perera, B.J.C.; Ng, A.W.M.; Tran, D. Drought forecasting using an aggregated drought index and artificial neural network. J. Water Clim. Chang. 2010, 1, 193–206. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. [Google Scholar] [CrossRef]
- Adamowski, J.; Chan, H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407, 28–40. [Google Scholar] [CrossRef]
- Rajaee, T.; Nourani, V.; Zounemat-Kermani, M.; Kisi, O. River suspended sediment load prediction: Application of ann and wavelet conjunction model. J. Hydrol. Eng. 2011, 16, 613–627. [Google Scholar] [CrossRef]
- Jothiprakash, V.; Magar, R.B. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J. Hydrol. 2012, 450–451, 293–307. [Google Scholar] [CrossRef]
- Kim, S.; Seo, Y.; Singh, V.P. Assessment of pan evaporation modeling using bootstrap resampling and soft computing methods. J. Comput. Civ. Eng. 2015, 29, 04014063. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P.; Parasuraman, K. River stage forecasting using wavelet packet decomposition and machine learning models. Water Resour. Manag. 2016, 30, 4011–4035. [Google Scholar] [CrossRef]
- Le, X.-H.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) neural network for flood forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.H.; Chung, E.-S.; Shiru, M.S. Uncertainty Analysis of Monthly Precipitation in GCMs Using Multiple Bias Correction Methods under Different RCPs. Sustainability 2020, 12, 7508. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jin, Q.; Chao, J. Design of deep belief networks for short-term prediction of drought index using data in the huaihe river basin. Math. Probl. Eng. 2012, 2012, 235929. [Google Scholar] [CrossRef] [Green Version]
- Agana, N.A.; Homaifar, A. EMD-based predictive deep belief network for time series prediction: An application to drought forecasting. Hydrology 2018, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, J.; Long, Z.; Chen, Y. A novel dual-scale deep belief network method for daily urban water demand forecasting. Energies 2018, 11, 1068. [Google Scholar] [CrossRef] [Green Version]
- Gers, F.A.; Eck, D.; Schmidhuber, J. Applying LSTM to time series predictable through time-window approaches. In Proceedings of the Neural Nets WIRN Vietri-01, Vienna, Austria, 21–25 August 2001; Tagliaferri, R., Marinaro, M., Eds.; Springer: London, UK, 2002; pp. 193–200. [Google Scholar]
- Sung, J.H.; Seo, S.B. Estimation of river management flow considering stream water deficit characteristics. Water 2018, 10, 1521. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations; MIT Press: Cambridge, MA, USA, 1986; pp. 194–281. ISBN 978-0-262-68053-0. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Items | Detail |
---|---|
Prediction variable | Stream water-use rate (WUR) |
Input variable | 3-, 4-, 5-, and 6-month cumulative precipitations (P) 3-, 4-, 5-, and 6-month cumulative PETs (PET) Antecedent stream water-use rate (DWUR) |
Training parameters | Number of hidden units: 10, 20, 30 Learning rate: 0.1, 0.5, 0.9 Number of epochs: 100, 500, 1000 Batch size: 6, 12, 24 |
Parameters | Duration | P_PET_DWUR | P_DWUR | PET_DWUR |
---|---|---|---|---|
Hidden layer | 3 months | 20 | 10 | 20 |
4 months | 20 | 10 | 30 | |
5 months | 30 | 30 | 10 | |
6 months | 10 | 20 | 20 | |
Learning rate | 3 months | 0.9 | 0.5 | 0.5 |
4 months | 0.9 | 0.9 | 0.5 | |
5 months | 0.9 | 0.5 | 0.9 | |
6 months | 0.5 | 0.5 | 0.9 | |
Epochs | 3 months | 1000 | 100 | 1000 |
4 months | 1000 | 100 | 1000 | |
5 months | 1000 | 1000 | 1000 | |
6 months | 1000 | 1000 | 1000 | |
Batch size | 3 months | 6 | 6 | 6 |
4 months | 12 | 24 | 6 | |
5 months | 12 | 6 | 6 | |
6 months | 12 | 6 | 6 |
Duration | Performance Index | P_PET_DWUR | P_DWUR | PET_DWUR |
---|---|---|---|---|
3 months | RMSE | 0.12 | 0.33 | 0.12 |
NSE | 0.90 | 0.18 | 0.89 | |
R2 | 0.92 | 0.21 | 0.96 | |
4 months | RMSE | 0.14 | 0.35 | 0.16 |
NSE | 0.85 | 0.07 | 0.81 | |
R2 | 0.85 | 0.10 | 0.92 | |
5 months | RMSE | 0.19 | 0.34 | 0.16 |
NSE | 0.72 | 0.12 | 0.81 | |
R2 | 0.73 | 0.14 | 0.92 | |
6 months | RMSE | 0.23 | 0.35 | 0.21 |
NSE | 0.61 | 0.10 | 0.68 | |
R2 | 0.63 | 0.11 | 0.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.H.; Ryu, Y.; Chung, E.-S. Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network. Water 2020, 12, 2700. https://doi.org/10.3390/w12102700
Sung JH, Ryu Y, Chung E-S. Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network. Water. 2020; 12(10):2700. https://doi.org/10.3390/w12102700
Chicago/Turabian StyleSung, Jang Hyun, Young Ryu, and Eun-Sung Chung. 2020. "Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network" Water 12, no. 10: 2700. https://doi.org/10.3390/w12102700
APA StyleSung, J. H., Ryu, Y., & Chung, E.-S. (2020). Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network. Water, 12(10), 2700. https://doi.org/10.3390/w12102700