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Abstract: Water demand forecasting applies data supports for the scheduling and decision-making of
urban water supply systems. In this study, a new dual-scale deep belief network (DSDBN) approach
for daily urban water demand forecasting was proposed. Original daily water demand time series
was decomposed into several intrinsic mode functions (IMFs) and one residue component with
ensemble empirical mode decomposition (EEMD) technique. Stochastic and deterministic terms were
reconstructed through analyzing the frequency characteristics of IMFs and residue using generalized
Fourier transform. The deep belief network (DBN) model was used for prediction using the two
feature terms. The outputs of the double DBNs are summed as the final forecasting results. Historical
daily water demand datasets from an urban waterworks in Zhuzhou, China, were investigated by the
proposed DSDBN model. The mean absolute percentage error (MAPE), normalized root-mean-square
error (NRMSE), correlation coefficient (CC) and determination coefficient (DC) were used as
evaluation criteria. The results were compared with the autoregressive integrated moving average
(ARIMA) model, feed forward neural network (FFNN) model, support vector regression (SVR)
model, EEMD and their combinations, and single DBN model. The results obtained in the test period
indicate that the proposed model has the smallest MAPE and NRMSE values of 1.291099 and 0.016625,
respectively, and the largest CC and DC values of 0.976528 and 0.953512, respectively. Therefore, the
proposed DSDBN method is a useful tool for daily urban water demand forecasting and outperforms
other models in common use.

Keywords: daily water demand forecasting; ensemble empirical mode decomposition; deep belief
network; dual-scale

1. Introduction

Short-term water demand prediction is the basis for optimal operation scheduling and
decision-making of urban water supply systems, potentially providing a guide for the optimal
operation scheduling of pumping stations, reduced energy consumption of water production and
decreased economical costs of water supply. Domestic water cannot be stored for extended periods,
balanced water production and supply can be achieved by accurate short-term water demand
prediction, and the quality of water supply can be guaranteed.

In the past few decades, urban water demand forecasting has attracted considerable researcher
attention. House-Peters and Chang [1] and Donkor et al. [2] reviewed the various available methods
and models of water demand forecasting. In general, the two main approaches to water demand
forecasting are knowledge-driven modeling and data-driven modeling. The former can contain
detailed description of factors that affect urban water demand, such as population, price, income,

Energies 2018, 11, 1068; doi:10.3390/en11051068 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/5/1068?type=check_update&version=1
http://www.mdpi.com/journal/energies
http://dx.doi.org/10.3390/en11051068


Energies 2018, 11, 1068 2 of 15

temperature, rain and other factors. Jain and Ormsbee [3] used such methods for forecasting daily
water demand. Gato et al. [4] proposed a novel daily urban water demand model that merges
temperature and rainfall thresholds. Di et al. [5] integrated weather forecasting information into the
water demand model to improve short-term urban water demand prediction. The latter approach only
uses historical time series data and is widely employed in forecasting of water demand, including
support vector regression (SVR) [6], artificial neural network (ANN) [7], autoregressive integrated
moving average (ARIMA) [8], and a random forest regression models [9]. In addition, Tiwari and
Adamowski [10] applied mixed wavelet-bootstrap neural network method for short-term urban water
demand prediction. Bai et al. [11] proposed a multi-scale relevance vector regression (RVR) method
using the combination of stationary wavelet transform and RVR to predict daily urban water demand.
According to the literature [2], ANNs and integrated models are more suitable than other approaches
for short-term water demand prediction.

Deep belief network (DBN), developed by Hinton et al. [12], is a probabilistic generative model
and uses greedy layer-wise unsupervised learning algorithm. DBN possess numerous hidden
layers to extract the latent features by layer-wise learning, thereby realizing powerful nonlinear
expressive capacity. DBN can better solve problems of overfitting, local minimum, and poor global
search capability than ANN [13]. Successful applications has been achieved in the fields of acoustic
modeling [14], natural language understanding [15], image classification [16,17], fault diagnosis [18,19],
exchange rate forecasting [20,21], reservoir inflow forecasting [22], electricity load forecasting [23],
building energy consumption prediction [24], and time series forecasting [13,25]. However, the
literature on daily urban water demand forecasting is limited.

As a new data preprocessing method, the empirical mode decomposition (EMD) technique
developed by Huang et al. [26] is a self-adaptive decomposition approach that does not require a priori
knowledge. EMD is based on the assumption that data may consist of different coexisting modes of
oscillations and can be expressed as intrinsic mode function (IMF) components [26,27]. However, the
mode mixing problem of EMD occurred during application, thus seriously affecting the accuracy of
short-term forecasting [28]. Wu and Huang [29] proposed ensemble EMD (EEMD) to eliminate the
disadvantages of EMD technique by adding finite white noise to the original signal. In recent years,
EEMD has demonstrated more advantageous than EMD in signal decomposition and been successfully
applied in various fields. Liu et al. [28] used sub-section particle swarm optimization model based
on EEMD for short-term load prediction, and the proposed method can improve prediction accuracy.
Wang et al. [30] implemented the ANN model based on EEMD to forecast medium and long-term
runoff, the results indicate that EEMD can markedly improve forecasting accuracy. Wang et al. [31]
applied the hybrid EEMD and generic algorithm-back propagation (GA-BP) neural network algorithm
to wind speed prediction. Compared with the traditional GA-BP model, GA-BP model based on
EMD technique, and wavelet neural network model, the proposed hybrid model exhibited higher
prediction accuracy.

This paper proposes a novel dual-scale deep belief network (DSDBN) method for daily urban
water demand forecasting. The original time series data of daily urban water demand are decomposed
into a set of IMFs and residue component using EEMD technique. Subsequently, generalized Fourier
transform (GFT) is applied to analyze the frequency characteristics of each component. Subcomponents
are reconstructed into stochastic and deterministic terms according to the frequency characteristics.
Then, the terms are considered as input data to build DBN forecasting model. The final result of
urban water demand forecast is obtained by superposing the forecasting result of double DBNs. The
remainder of the paper is arranged as follows. Section 2 presents the methodologies including EEMD,
GFT method, DBN, and DSDBN models. Section 3 describes the study area and the dataset. The
forecasting results, comparison and discussions are illustrated Section 4. Finally, Section 5 gives
the conclusions.
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2. Methodology

In general, a time series data can be decomposed into a combination of several feature terms,
including the stochastic, periodic, and trend terms [32], the latter two can be combined into a
deterministic term. An original time series of daily water demand x(t) can be represented as:

x(t) = xsto(t) + xper(t) + xtre(t) = xsto(t) + xdet(t) (1)

where xsto(t), xper(t), xtre(t), and xdet(t) are the stochastic, periodic, trend and deterministic terms,
respectively. The stochastic term xsto(t) shows the random interferences and noise information of the
time series, and the deterministic term xdet(t) including the periodic term xper(t) and the trend term
xtre(t), which indicate the seasonal and long-term change rules in the time series.

2.1. EEMD and GFT

EEMD, proposed by Wu and Huang [29], is an adaptive method developed from EMD [26] with a
noise-assisted analysis technique. EMD is a self-adaptive approach to extract a set of IMFs from the
original data. IMFs stand for the natural oscillatory mode existed in the original signal, each with
corresponding frequency, physical meaning and the following properties [26]: (1) the amount of zero
crossings and extrema in the entire dataset must either equal or differ at most by one; and (2) at any
point, the average value of the envelope defined by local minima and maxima is zero.

According to traditional definition, the original daily water demand data x(t) can be decomposed
through an EMD shifting process, which can be simply described as below [26]:

Step 1: All local minima and maxima values of the given data x(t) are identified.
Step 2: The lower envelope eL(t) and upper envelope eH(t) for the minima and maxima values,

respectively, are obtained by cubic spline interpolation.
Step 3: The average value a(t) of the lower and upper envelopes are calculated:

a(t) =
eL(t) + eH(t)

2
(2)

Step 4: The first component d(t) is derived by calculating the difference between the given data x(t)
and the average value a(t):

d(t) = x(t)− a(t) (3)

Step 5: If d(t) meets the properties of IMF, d(t) is the first IMF, written as c1(t) = d(t); otherwise, new
x(t) is replaced by d(t), and Steps 1–4 are repeated until d(t) meets the properties of IMF.

Step 6: The residual signal r(t) = x(t)− c1(t) is treated as new x(t), and Step 1 is conducted again
and the same shifting process is accepted to obtain the next IMF. If r(t) becomes a monotonic
function or only presents an extreme value from which no more IMF can be extracted, the
shifting process of EMD can be stopped.

At the end of EMD shifting process, the original time series x(t) can be expressed as a linear
combination of m IMFs and one residue from high to low frequency:

x(t) =
m

∑
i=1

ci(t) + rm(t) (4)

where m represents the number of IMFs, ci(t) denotes the ith IMF at the time t, and rm(t) is the final
residue of the time series x(t). All ci(t) have zero means and are nearly orthogonal to each other.

However, mode mixing problem exists during the use of EMD approach, which cannot correctly
decompose the original time series; some different-scale signals are present in an IMF, or the
similar-scale signals are present in different IMFs; and the IMFs lose physical meaning by themselves.
To eliminate the mode mixing phenomenon, Wu and Huang [29] introduced an effective EEMD
method. The shifting process of EEMD method is briefly described as follows:
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Step 1: A random white noise signal with a zero mean and a given standard deviation e is added to
the original time series x(t).

Step 2: The original time series x(t) with added white noise signal is decomposed into IMFs and
residue component.

Step 3: Steps 1 and 2 are repeated M times using a different white noise signal each time.
Step 4: The average of corresponding IMFs resulting from decompositions is calculated as the

final result.

The effect of the added white noise signal can be reduced based on the following rule [29]:

e′ =
e√
M

(5)

where M denotes the ensemble numbers, e represents the amplitude of the added noise signal, and e′

denotes the final standard deviation of error and is defined as the difference between the original data
x(t) and the corresponding IMFs.

The GFT of the ith IMF component ci(t) can be expressed as [33]:

Ci( f ) =
∫ ∞

−∞
ci(t)e−i2π[t f+s0(t)]dt (6)

where s0(t) is a phase transform real-valued function that details the behavior of the ci(t). The
component ci(t) may be calculated by the inverse GFT:

ci(t) = ei2πs0(t)
∫ ∞

−∞
Ci( f )ei2πt f d f (7)

If Ci( f ) ≡ δ( f − f0), then ci(t) = ei2π[t f0+s0(t)], where f0 = f (t)− s′0(t) is the expectation of GFT
frequency traces.

The IMFs and residue component are summed up by following the frequency characteristic and

reconstructing the stochastic term xsto(t) =
j

∑
i=1

ci(t) and deterministic term xdet(t) =
m
∑

i=j+1
ci(t)+rm(t).

This approach thereby reduces the prediction steps and computational complexity of the algorithm
without increasing the prediction error.

2.2. Deep Belief Network

A DBN is stacked by multiple restricted Boltzmann machine (RBM) layers, and their structure are
shown in Figure 1. As seen in Figure 1a, a RBM is composed of one visible layer and one hidden layer.
Symmetrically weighted connections are present among the units of interlayers, and no connections
occur between the neurons in the same layer [34]. As shown in Figure 1b, a DBN is stacked by l RBMs,
which presents one input layer, also named visible layer, multiple hidden layers and one output layer.
The visible layer of the first RBM acts as the DBN input layer; the hidden layer of the first RBM is the
visible layer of the second RBM and is the first hidden layer of the DBN. Then, the hidden layer of the
second RBM is the visible layer of the third RBM and the second hidden layer of DBN. This process
continues, and layer-by-layer stacking occurs. Thus, a DBN with multiple hidden layers is established.

Hinton et al. [12] proposed a fast, unsupervised and greedy learning method for DBN. This
learning process is based on the training one layer at a time. The main concept of this algorithm is that
the input samples are randomly selected for training the first RBM, and the hidden units can acquire
the unique important features of the input samples. We used the hidden layer as the first hidden layer
of DBN, the training feature is used as input samples to train the next RBM. We repeated the process of
the learning feature until all layers of DBN have been trained over.
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The classic RBM model can only address binary-valued data. A continuous restricted Boltzmann
machine (CRBM) was proposed by Chen and Murray [35], and the neurons indicate continuous state
values. Therefore, the model can address real-valued data. Given that daily urban water demand data
are continuous, we used multiple CRBMs to construct the DBN, which can process real-valued data
and can be applied to urban daily water demand forecasting. The model training process is described
as follows:

Step 1: The state of units and the weight matrix are randomly initialized. Let sv and sh denote the
states of the visible units v and hidden units h, and wvh is the interconnected weight.

Step 2: A set of training sample are randomly selected as input; the states sh of the first hidden units
are updated based on the following formula:

sh = ϕh

[
∑
v

wvhsv + σ · Nh(0, 1)

]
(8)

with
ϕh(xh) = θmin + (θmax − θmin) ·

1
1 + e−ahxh

(9)

where σ represents a constant between 0 and 1, Nh(0, 1) denotes a Gaussian random unit
with a unit variance and zero mean, ϕh(x) is a sigmoid function with asymptotes at θmin and
θmax, and ah controls the gradient of the sigmoid function and the nature of the unit’s random
behavior [36].

Step 3: sh is used in computing the states s′v of visible units:

s′v = ϕv

[
∑
h

wvhsh + σ · Nv(0, 1)

]
(10)

Step 4: s′v is used in computing the states s′h of hidden units:

s′h = ϕh

[
∑
v

wvhs′v + σ · Nh(0, 1)

]
(11)

Step 5: The next set of training sample is randomly selected and Step 2 commences. If all training
samples are used, the following formulas are used in updating the weight and noise
control parameters:

∆wvh = ηw
(
< svsh > − < s′vs′h >

)
(12)
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∆ah =
ηa

a2
h

(
< s2

h > − < s′2h >
)

(13)

wvh(k + 1) = wvh(k) + ∆wvh (14)

ah(k + 1) = ah(k) + ∆ah (15)

where ηw and ηa are the learning rates; s′v and s′h are the single-step sampled state of unit v
and h, respectively; and < · > related to the mean over the training samples.

Step 6: Step 2 is repeated, and the next round of training is conducted until the number of preset
training is reached or the weight change matrix is sufficiently small, that is, |∆w(k)|< ε , and
the first CRBM is trained over.

Step 7: The output of the first CRBM is considered as the input of the second CRBM. Steps 1–6 are
repeated for training the second CRBM until all CRBMs of DBN are trained and the training
is completed.

2.3. The DSDBN Forecasting Model

Daily urban water demand time series is a typical nonlinear and non-stationary signal. We used
EEMD to extract the IMFs and residue component in the original time series of daily water demand.
We reconstructed the stochastic term and deterministic term in accordance with the frequency
characteristic, thereby decreasing the non-stationary of the original data. Then, we used DBN to predict
the two feature terms. Finally, the prediction results of the two feature term were superimposed. The
modeling structure flow chart of the DSDBN prediction model is illustrated in Figure 2.
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As seen in Figure 2, the six main steps of the DSDBN forecasting method are listed as follows:

Step 1: Daily water demand time series is collected, and data outliers are eliminated.
Step 2: EEMD is utilized to decompose the daily water demand time series into the combination of m

IMFs and one residue component.
Step 3: GFT is performed to analyze the spectral characteristics of each IMF and residue. The

stochastic term xsto(t) and deterministic term xdet(t) are reconstructed in accordance with the
frequency characteristic.
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Step 4: The structure of the DBN model is designed to correspondingly predict the stochastic term
xsto(t) and deterministic term xdet(t), including selecting the number of input units, hidden
units and layer and setting other parameters.

Step 5: The prediction results of the stochastic term and the deterministic term are combined. The
results can be used as the final prediction result for the original daily water demand time series.

Step 6: The final result is compared with the peer model, and the performance of the proposed DSDBN
model is evaluated.

3. Case Study

3.1. Study Area and Data

We collected 1462 daily water demand records from 1 January 2012 to 1 January 2016 from
an urban waterworks (latitude and longitude north 113.158037, east 27.824564) in Zhuzhou, China.
This urban waterworks has a capacity of 100,000 m3 of filter water per day and supplies water for
approximately 0.4 million people and enterprises in Lusong District, an area of approximately 200 km2.
Among 1462 daily records, the first 1224 daily series from 1 January 2012 to 8 May 2015 were used
as the training dataset, and the other 238 records were retained for testing. The original daily urban
water demand data are plotted in Figure 3.
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As shown in Figure 3, the daily water demand time series indicates a certain regularity as time
continues. The water demand begins to decrease until the annual minimum in the winter, then increase.
The highest value is reached in the summer because most enterprises indicate that their main water
consumers are on holiday and decrease their water demand during China’s Spring Festival.

3.2. Performance Evaluation

For validating and evaluating the forecasting performance of the proposed models, we used four
widely used criteria in this study.

3.2.1. Mean Absolute Percentage Error (MAPE)

MAPE is an unbiased estimator for evaluating the forecasting capability of a model and it is often
applied to practice because of its intuitive explanation in terms of relative error [37]. MAPE is used in
evaluating the effect of the model from the perspective of the prediction error.

MAPE =
100
N

N

∑
t=1

∣∣∣∣∣Y(t)− Ŷ(t)
Y(t)

∣∣∣∣∣ (16)
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where Y(t) and Ŷ(t) denote the observed and predicted value at time t, respectively, and N is the
number of observed value. A low value indicates good prediction effect of the model.

3.2.2. Normalized Root-Mean-Square Error (NRMSE)

NRMSE represents the total accuracy of the prediction [11].

NRMSE =

√
1
N

N
∑

t=1

[
Y(t)− Ŷ(t)

]2
1
N

N
∑

t=1
Y(t)

(17)

A lower value indicates less residual variance and stronger agreement between the observed and
predicted values.

3.2.3. Correlation Coefficient (CC)

CC shows the linear between the observed and predicted value [38].

CC =

N
∑

t=1

[
Y(t)−Y(t)

][
Ŷ(t)− Ŷ(t)

]
√

N
∑

t=1

[
Y(t)−Y(t)

]2√ N
∑

t=1

[
Ŷ(t)− Ŷ(t)

]2
(18)

where Y(t) and Ŷ(t) are the means of the observed and the predicted value, respectively.
A CC value approaching 1 indicates a good fit between the observed and predicted value and

superior predictive capability of the model.

3.2.4. Determination Coefficient (DC)

DC shows the unconformity between the observed and predicted values and the number of points
close to the bisector in the scatter plot of two variables [39].

DC = 1−

N
∑

t=1

[
Y(t)− Ŷ(t)

]2
N
∑

t=1

[
Y(t)−Y(t)

]2 (19)

According to Equation (19),
N
∑

t=1

[
Y(t)− Ŷ(t)

]2
= 0 and DC = 1 indicate ideal performance of

the model.

4. Results and Discussion

4.1. Decomposing and Reconstructing Water Demand Time Series

Using EEMD to decompose the original water demand time series, two key parameters need to
be set, namely, the numbers of the ensemble M and the amplitude of white noise e. As presented in
Equation (5), Wu and Huang [29] set the amplitude of added white noise signal to 0.2 times the standard
deviation and experimented with empirical methods for numerous times. The group encountered
difficulty in eliminating the mode mixing phenomenon at extremely small values of e, whereas, at
an excessively large e, they observed that several extra IMF components are produced, leading to
misjudgment of the results. The EEMD parameter settings for different application areas [40–42] refer
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to the method proposed by Wu and Huang [29]. In this study, the ensemble member M and the
standard deviation of added white noise signal e′ of the EEMD were set to 100 and 0.2, respectively.

As described above, the original daily urban water demand time series is decomposed into nine
independent IMF c1(t)–c9(t) and one residue r9(t) by using the EEMD method, the decomposition
results are shown in Figure 4, where the components c1(t)–c9(t) and r9(t) are in accordance with the
order from high to low frequency, and r9(t) reflects the overall trend of the original daily water demand
time series. The EEMD decomposition presents significant physical meaning, transforms nonlinear
and non-stationary series into stationary series and facilitates improved forecasting performance.
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The frequency spectrum of each IMF and residue component using GFT are shown in Figure 5,
wherein two main frequency components, namely, f1 = 0.000488 (1/day) and f2 = 0.002930 (1/day),
are in the original daily water demand time series; different frequency components are present in
c1(t)–c4(t); similar frequency components f2 in c5(t)–c7(t) (2 f2, 3 f2 and 6 f2 in c5(t); 0.7 f2, f2 and 2 f2

in c6(t); and f2 in c7(t)); and same frequency components f1 in c8(t), c9(t) and r9(t). According to
EEMD and GFT analysis results, the nine IMFs and one residue component can be reconstructed into
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three categories, namely,
4
∑

i=1
ci(t),

7
∑

i=5
ci(t) and c8(t) + c9(t) + r9(t). The first category can be regarded

as the stochastic term, whereas the latter two categories are treated as deterministic terms, that is,

stochastic term xsto(t) =
4
∑

i=1
ci(t) and deterministic term xdet(t) =

9
∑

i=5
ci(t) + r9(t).
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4.2. Modeling Method of DBN

The number of input nodes, hidden layers and nodes is the key issue in the design of DBN
structure. The number of input nodes that corresponds to the number of previous observed values is
correlated with future values and determines the autocorrelation structure of the daily water demand
time series. The hidden layers and nodes expose nonlinear patterns and complex intrinsic relationship
in the daily water demand time series. At present, no mature theory can solve these problems. In this
study, the number of input nodes, hidden layers and nodes of DBN was determined by the experiment.
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Assuming that the training dataset is x(n), we used one-step-ahead forecasting and set the DBN
with q input nodes and an output node, with the number of q ranging from 1 to 10. The training
sample involves X(n) = [x(n), x(n + 1), . . . , x(n + q)] as the inputs and Y(n) = x(n + q + 1) as the
output. The hidden layers were set from 1 to 3, and the number of the hidden nodes were set to 4, 8,
12, 16 and 20. We used the four evaluation criteria described in Section 3.2 to evaluate the learning
capability of DBN with different parameters and select the number of hidden layers and nodes with
optimal learning performance. Researchers found that the forecasting performance of multiple hidden
layers are superior to that with only one layer [43], and that the forecasting performance of the neural
network exerts a significant effect as the number of hidden nodes changes [44].

Other parameters need to be set during the DBN training process. First, we set the initial values
and update the method of wvh in Equation (8); then, we used a group of random initial values in
the first CRBM and constantly adjusted the weight matrix until stability was achieved. Then, the
weight matrix of the next CRBM was initialized using the weight matrix of the previous CRBM, and
layer-by-layer training was conducted until the CRBM trainings were finished. The parameters θmax

and θmin in Equation (9) were set to be the maximum and minimum values of the entire training
samples, respectively. The parameters σ in Equations (10) and (11), ηw in Equation (12), and ηa and
ah in Equation (13) were determined by 5-fold cross-validation method. To obtain the global optimal
solution, we trained every DBN 20 times using 20 groups of random initial values, and the mean
values of those 20 times were used as the training result of a DBN.

The stochastic term xsto(t) and deterministic term xdet(t) were modeled using the method
described above. According to the four performance evaluation criteria, namely, MAPE, NRMSE, CC
and DC, the best structure of DBN with the best learning performance was selected. The structure
of DBN and the forecasting performance of training dataset are listed in Table 1, where the optimal
architecture of DBN for the stochastic term xsto(t) is 10-8-12-1, that is, DBN with 2 hidden layers,
10 input nodes, 8 and 12 nodes in the first hidden layer and second hidden layer, respectively, and
1 output node. For the deterministic term xdet(t), the optimal structure of DBN is 4-16-1 (input layer:
4 nodes, hidden layer: 16 nodes and output: 1 node).

Table 1. DBN structure and the forecasting result of training dataset.

Feature Term DBN Structure MAPE NRMSE CC DC

xsto(t) 10-8-12-1 7.591709 0.089303 0.904627 0.818234
xdet(t) 4-16-1 0.387461 0.003663 0.999941 0.999882

4.3. Forecasting Result

The forecasting result of the stochastic term xsto(t) and deterministic term xdet(t) is plotted in
Figure 6. Figure 6a shows the forecasting result of the stochastic term xsto(t) using DBN with 10-8-12-1,
and Figure 6b plots the forecasting results of the deterministic term xdet(t) using DBN with 4-16-1.
The final forecasting results of the original daily water demand can be obtained by superimposing the
forecasting results of stochastic term xsto(t) and deterministic term xdet(t). Figure 7 displays the final
forecasting results. Figure 7a shows the comparison between the predicted and observed value, and
Figure 7b exhibits the scatter of predicted and observed values. In Figure 7a, the forecasting values
can follow the changes of the observed daily water demand. The correlation between the predicted
and the observed values in Figure 7b indicates that both values are highly consistent. The results of
four performance evaluation criteria are MAPE = 1.291099, NRMSE = 0.016625, CC = 0.976528 and
DC = 0.953512, which indicate that the proposed approach exhibits good learning performance and
forecasting capability.
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4.4. Comparison Experiment

To assess the performance of the proposed DSDBN model, ARIMA model, feed forward neural
network (FFNN) model, and SVR model were employed for comparison using the same training
and testing samples. The three comparison models also use EEMD method to decompose the daily
water demand time series, and the stochastic and deterministic terms are reconstructed using the
same method as described in Section 4.1. In addition, for assessing the effect of EEMD on predictive
performance, a single DBN model was developed to use the original daily water demand time series.
In ARIMA modeling, KPSS is used to test the stability of the two feature terms and Akaike information
criterion [45] is employed to identify the best fitted model. FFNN modeling uses the same nodes
and layers with the DSDBN model, the sigmoid and linear activation functions in the hidden and
output layer, respectively, and the back propagation algorithm to train the model. In SVR modeling,
the kernel function selects the linear kernel and uses the grid search method to determine values of
optimal parameters C and γ2, and the value of insensitive loss function ε′ is set to 0.1. The single DBN
modeling uses the same method as DSDBN modeling to select the number of nodes and hidden layers,
and the structure of single DBN is finally set to 6-4-12-1.

The prediction results of the four different comparison models are shown in Table 2. In Table 2,
the DSDBN model presents smallest MAPE and NRMSE values, and the largest CC and DC values
among the models and improved the EEMD-ARIMA, EEMD-FFNN, EEMD-SVR and DBN models,
with reduction of MAPE of approximately 76.48%, 34.56%, 69.8% and 20.36%, respectively; reduction
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of NRMSE of 71.53%, 40.44%, 66.34% and 18.38%, respectively; increase in CC of 1.24%, 2.3%, 1.13%
and 0.85%, respectively; and increase in DC of 123.67%, 9.73%, 61.73% and 2.52%, respectively. The
results of this analysis illustrate that the proposed DSDBN model is superior to the other four models
in forecasting daily urban water demand. Moreover, the findings indicate that the DSDBN model,
which is based on the method of “decomposing and reconstructing”, improves the prediction accuracy
compared with the single DBN model; thus, the model is superior to ARIMA, FFNN and SVR models
in predicting nonlinear and non-stationary daily urban water demand.

Table 2. Comparison of the predictive performances by using different forecasting models.

Model MAPE NRMSE CC DC

DSDBN 1.291099 0.016625 0.976528 0.953512
EEMD-ARIMA 5.489027 0.058402 0.964553 0.426299
EEMD-FFNN 1.972864 0.027913 0.954584 0.868948
EEMD-SVR 4.274470 0.049398 0.965657 0.589553

DBN 1.621183 0.020369 0.968261 0.930088

5. Conclusions

In this paper, a novel dual-scale deep belief network method is proposed to predict the daily urban
water demand. The proposed approach is exploited using the historical daily water demand datasets
from an urban waterworks in Zhuzhou, China. By using EEMD method, the original daily urban water
demand data are decomposed into nine IMFs and one residue component, and reconstructed into
stochastic and deterministic terms according to the frequency characteristics of each component by
GFT analysis. DBN models are used to forecast these two feature terms. Then, the two sub-results are
superposed to produce the final forecasting results. To validate and assess the forecasting performance
of the proposed model, EEMD-ARIMA, EEMD-FFNN, EEMD-SVR and single DBN models were
employed as benchmark comparisons. Four standard performance evaluation criteria (MAPE, NRMSE,
CC and DC) were utilized to evaluate the forecasting capacity of all the selected models. Results of the
empirical study show that the DSDBN approach exhibits the highest prediction accuracy among all
comparison models on daily water demand forecasting of the urban waterworks in Zhuzhou, China.
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