Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Meteorological Data
3.2. Soil and Land Cover
3.3. Model
3.4. Data-Grid and Interpolation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix B.1. Rio Catatumbo
Appendix B.2. Sabana de Bogota
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Band, L.; Mackay, D.; Creed, I.; Semkin, R.; Jeffries, D. Ecosystem processes at the watershed scale: Sensitivity to potential climate change. Limnol. Oceanogr. 1996, 5, 928–938. [Google Scholar] [CrossRef]
- Jimenez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Impacts, Adaptation and Vulnerability. Part A: Global and Sectorial Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2014; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- Healy, R.W.; Winter, T.C.; LaBaugh, J.W.; Franke, O.L. Water Budgets: Foundations for Effective Water-Resources and Environmental Management; U.S. Geological Survey Circular: Reston, VA, USA, 2007; Volume 1308, 90p.
- Burns, D.A.; Klaus, J.; McHale, M.R. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol. 2007, 336, 155–170. [Google Scholar] [CrossRef]
- Candela, L.; Elorza, F.J.; Jiménez-Martínez, J.; von Igel, W. Global change and agricultural management options for groundwater sustainability. Comput. Electron. Agric. 2012, 86, 120–130. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef]
- Ruth, M.; Coelho, D. Understanding and managing the complexity of urban systems under climate change. Clim. Policy 2007, 7, 317–336. [Google Scholar] [CrossRef]
- Werritty, A. Living with uncertainty: Climate change, river flows and water resource management in Scotland. Sci. Total Environ. 2002, 294, 29–40. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water; Technical Paper; Interguvernmental Panel on Climate Change: Geneva, Switzerland, 2008; 210p. [Google Scholar]
- Fu, G.; Charles, S.P.; Yu, J. A critical overview of pan evaporation trends over the last 50 years. Clim. Chang. 2009, 97, 193–214. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- IDEAM; PNUD; MADS; CANCILLERÍA; DNP. New Climate Change Scenarios for Colombia 2011–2100. Scientific Tools for National-Regional Level Decision-Making. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf (accessed on 11 September 2019).
- Snow, J.W. The Climate of Northern South America. Climates of Central and South America; Schwerdtfeger, W., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 295–403. [Google Scholar]
- Mejía, J.F.; Mesa, O.J.; Poveda, G.; Vélez, J.I.; Hoyos, C.D.; Mantilla, R.; Barco, J.; Cuartas, A.; Montoya, M.; Botero, B. Spatial distribution, annual and semi-annual cycles of precipitation in Colombia. DYNA 1999, 127, 7–26. (In Spanish) [Google Scholar]
- León, G.E.; Zea, J.A.; Eslava, J.A. General circulation and the intertropical convergence zone in Colombia. Meteor. Colomb. 2000, 1, 31–38. (In Spanish) [Google Scholar]
- WMO. WMO Guidelines on the Calculation of Climate Normals; WMO-No. 1203; Chairperson, Publications Board: Geneva, Switzerland, 2017; Available online: https://library.wmo.int/doc_num.php?explnum_id=4166 (accessed on 21 June 2019).
- Molina, O.D.; Bernhofer, C. Projected climate changes in four different regions in Colombia. Environ. Syst. Res. 2019, 8, 33. [Google Scholar] [CrossRef]
- Federer, C.A. BROOK 90: A Simulation Model for Evaporation, Soil Water, and Streamflow. 2002. Available online: http://www.ecoshift.net/brook/brook90.htm (accessed on 21 June 2019).
- Combalicer, E.A.; Lee, S.H.; Ahn, S.; Kim, D.Y.; Im, S. Modeling water balance for the small-forested watershed in Korea. KSCE J. Civ. Eng. 2008, 12, 339–348. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic properties of porous media. Hydrol. Pap. 1964, 3, 1–27. [Google Scholar]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil water characteristics from texture. Trans. Am. Soc. Agric. Eng. 1986, 50, 1031–1035. [Google Scholar] [CrossRef]
- Wahren, A.; Schwärzel, K.; Feger, K.H.; Münch, A.; Dittrich, I. Identification and model based assessment of the potential water retention caused by land-use changes. Adv. Geosci. Eur. Geosci. Union 2007, 11, 49–56. [Google Scholar] [CrossRef]
- Bastidas Osejo, B.; Betancur Vargas, T.; Alejandro Martinez, J. Spatial distribution of precipitation and evapotranspiration estimates from Worldclim and Chelsa datasets: Improving long-term water balance at the watershed-scale in the Urabá region of Colombia. Int. J. Sustain. Dev. Plan. 2019, 14, 105–117. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. J. Hydrol. Reg. Stud. 2016, 8, 182–197. [Google Scholar] [CrossRef]
- Louzada, F.L.R.; de, O.; Xavier, A.C.; Pezzopane, J.E.M. Climatological water balance with data estimated by tropical rainfall measuring mission for the Doce river basin. Eng. Agric. 2018, 38, 376–386. [Google Scholar] [CrossRef]
- Silva, A.L.; Roveratti, R.; Reichardt, K.; Bacchi, O.O.; Timm, L.C.; Bruno, I.P.; Oliveira, J.C.; Dourado Neto, D. Variability of water balance components in a coffee crop in Brazil. Sci. Agric. 2006, 63, 105–114. [Google Scholar] [CrossRef]
- Almeida, A.Q.; Ribeiro, A.; Leite, F.P.; Souza, R.; Gonzaga, M.S.; Santos, W.A. Water Balance in a Tropical Eucalyptus plantations in the Doce River Basin, Eastern Brazil. JAS J. Agric. Sci. 2019, 11, 209–217. [Google Scholar] [CrossRef]
- Schwerdtfeger, J.; Weiler, M.; Johnson, M.S.; Couto, E.G. Estimating water balance components of tropical wetland lakes in the Pantanal dry season, Brazil. Hydrol. Sci. J. 2014, 59, 2158–2172. [Google Scholar] [CrossRef]
- Escurra, J.J.; Vazquez, V.; Cestti, R.; De Nys, E.; Srinivasan, R. Climate change impact on countrywide water balance in Bolivia. Reg. Environ. Chang. 2014, 14, 727–742. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237. [Google Scholar] [CrossRef]
- Bonilla-Ovallos, C.A.; Mesa, O.J. Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Rev. De La Acad. Colomb. De Cienc. Exactas Físicas Y Nat. 2017, 41, 107. [Google Scholar] [CrossRef]
- Yin, L.; Fu, R.; Shevliakova, E.; Dickinson, R.; Dickinson, R.E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim. Dyn. 2012, 41, 3127–3143. [Google Scholar] [CrossRef]
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 2013, 3, 811–815. [Google Scholar] [CrossRef]
- Feng, X.; Vico, G.; Porporato, A. On the effects of seasonality on soil water balance and plant growth. Water Resour. Res. 2012, 48, W05543. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Tank, A.M.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and surface. In Climate Change 2013: The Physical Science Bases. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. Available online: http://www.climatechange2013.org/report/full-report/ (accessed on 7 August 2019).
- MacDougall, A.H.; Eby, M.; Weaver, A.J. If anthropogenic CO2 emissions cease, will atmospheric CO2 concentration continue to increase? J. Clim. 2013, 26, 9563–9576. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Ma, Z. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull. 2014, 59, 412–429. [Google Scholar] [CrossRef]
- Ji, M.; Huang, J.; Xie, Y.; Liu, J. Comparison of dryland climate change in observations and CMIP5 simulations. Adv. Atmos. Sci. 2015, 32, 1565–1574. [Google Scholar] [CrossRef]
- Muerth, M.J.; St-Denis, G.; Ricard, B.; Velázquez, S.; Schmid, J.A.; Minville, M.; Caya, D.; Chaumont, D.; Ludwig, R.; Turcotte, R. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 2013, 17, 1189–1204. [Google Scholar] [CrossRef]
- Prudhomme, C.; Davies, H. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate. Clim. Chang. 2009, 93, 197–222. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578. [Google Scholar] [CrossRef]
- Dobler, C.; Hagemann, S.; Wilby, R.L.; Stötter, J. Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed, Hydrol. Earth Syst. Sci. 2012, 16, 4343–4360. [Google Scholar] [CrossRef]
- Thompson, J.R.; Green, A.J.; Kingston, D.G.; Gosling, S.N. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J. Hydrol. 2013, 486, 1–30. [Google Scholar] [CrossRef]
- Velázquez, J.A.; Schmid, J.; Ricard, S.; Muerth, M.J.; Gauvin St- Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R. An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrol. Earth Syst. Sci. 2013, 17, 565–578. [Google Scholar] [CrossRef]
- Jobst, A.M.; Kingston, D.G.; Cullen, N.J.; Schmid, J. Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand). Hydrol. Earth Syst. Sci. 2018, 22, 3125–3142. [Google Scholar] [CrossRef]
- Clark, M.P.; Wilby, R.L.; Gutmann, E.D.; Vano, J.A.; Gangopadhyay, S.; Wood, A.W.; Fowler, H.J.; Prudhomme, C.; Arnold, J.R.; Brekke, L.D. Characterizing uncertainty of the hydrologic impacts of climate change. Clim. Chang. Rep. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Xu, C.; Widén, E.; Halldin, S. Modelling hydrological consequences of climate change—Progress and challenges. Adv. Atmos. Sci. 2005, 22, 789–797. [Google Scholar] [CrossRef]
Region/Water District | Climate | Area (km2) | N° of Stations (Precipitation) | Min. Elevation (m.a.s.l.) | Max. Elevation (m.a.s.l.) | |
---|---|---|---|---|---|---|
1 | Alta Guajira | arid, desertic | 12,348 | 25 | 1 | 390 |
2 | Bajo meta | semihumid | 42,655 | 42 | 45 | 3520 |
3 | Rio Catatumbo | humid | 17,960 | 47 | 83 | 1740 |
4 | Sabana de Bogota | semihumid, semiarid | 2245 | 39 | 2540 | 3800 |
Precipitation (mm) | Streamflow (mm) | Evapotranspiration (mm) | Storage (mm) | |||||
---|---|---|---|---|---|---|---|---|
2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | |
Alta Guajira | ||||||||
CanESM2 (RCP 2.6) | 9.12 | 3.68 | 17.73 | 35.07 | 13.73 | −10.36 | −22.34 | −21.03 |
CanESM2 (RCP 8.5) | −0.88 | −24.15 | 66 | −22.75 | −22.24 | −26.74 | −44.64 | 25.34 |
IPSL-CM5A-MR (RCP 2.6) | −35.22 | −26.59 | −1.97 | −15.73 | −4.37 | −25.27 | −28.88 | 14.41 |
IPSL-CM5A-MR (RCP 8.5) | −35.13 | −22.07 | −22.8 | −52.77 | −18.3 | 0.4 | 5.97 | 30.3 |
Bajo Meta | ||||||||
CanESM2 (RCP 2.6) | −11.41 | −11.58 | −12.48 | −12.81 | −6.67 | −5.29 | 7.74 | 6.52 |
CanESM2 (RCP 8.5) | −19.33 | −20.73 | −20.45 | −22.52 | −15.18 | −13.06 | 16.3 | 14.85 |
IPSL-CM5A-MR (RCP 2.6) | −1.5 | −6.91 | −10.58 | −15.85 | 18.12 | 27.03 | −9.04 | −18.09 |
IPSL-CM5A-MR (RCP 8.5) | −9.81 | −17.67 | −10.47 | −19.93 | 7.67 | 8.43 | −7.01 | −6.17 |
Rio Catatubo | ||||||||
CanESM2 (RCP 2.6) | −3.64 | −2.44 | −24.92 | −23.93 | 17.15 | 18.45 | 4.13 | 3.04 |
CanESM2 (RCP 8.5) | −8.9 | −10.57 | −30.73 | −39.7 | 12.41 | 17.78 | 9.42 | 11.35 |
IPSL-CM5A-MR (RCP 2.6) | −6.25 | −5.92 | −30.64 | −30.53 | 17.57 | 18.02 | 6.82 | 6.59 |
IPSL-CM5A-MR (RCP 8.5) | −14.17 | −13.68 | −35.08 | −40.32 | 6.24 | 12.24 | 14.67 | 14.4 |
Sabana de Bogota | ||||||||
CanESM2 (RCP 2.6) | 10.33 | 10.53 | −16.18 | −18.17 | 30.11 | 32.33 | −3.6 | −3.63 |
CanESM2 (RCP 8.5) | 17.84 | 16.78 | −24.59 | −22.39 | 50.25 | 46.41 | −7.82 | −7.24 |
IPSL-CM5A-MR (RCP 2.6) | −2.57 | −1.77 | −15.27 | −16.16 | 7.07 | 8.99 | 5.63 | 5.4 |
IPSL-CM5A-MR (RCP 8.5) | 12.54 | 20.72 | −20.8 | −11.09 | 38.1 | 44.67 | −4.76 | −12.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, O.; Luong, T.T.; Bernhofer, C. Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change. Water 2020, 12, 65. https://doi.org/10.3390/w12010065
Molina O, Luong TT, Bernhofer C. Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change. Water. 2020; 12(1):65. https://doi.org/10.3390/w12010065
Chicago/Turabian StyleMolina, Oscar, Thi Thanh Luong, and Christian Bernhofer. 2020. "Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change" Water 12, no. 1: 65. https://doi.org/10.3390/w12010065
APA StyleMolina, O., Luong, T. T., & Bernhofer, C. (2020). Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change. Water, 12(1), 65. https://doi.org/10.3390/w12010065