Impact of Bed Form Celerity on Oxygen Dynamics in the Hyporheic Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup, Conditions, and Approach
2.2. Bed Form Morphodynamics and Sediment Characterization
2.3. Hyporheic Exchange Flux
2.4. Oxygen Imaging with Planar Optodes
2.5. Data Analysis
3. Results
3.1. Water and Sediment Characteristics
3.2. Dynamics of HEF and Oxygen Distribution
3.3. Oxygen Fluxes and Uptake Rates
4. Discussion
4.1. Bed Form Morphodynamics and Flow
4.2. Dynamics of Oxygen Patterns
4.3. Oxygen Consumption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Boulton, A.J.; Findlay, S.; Marmonier, P.; Stanley, E.H.; Valett, H.M. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst. 1998, 29, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Boano, F.; Harvey, J.W.; Marion, A.; Packman, A.I.; Revelli, R.; Ridolfi, L.; Wörman, A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef]
- Lewandowski, J.; Arnon, S.; Banks, E.; Batelaan, O.; Betterle, A. Is the Hyporheic Zone Relevant beyond the Scientific Community? Water 2019, 11, 2230. [Google Scholar] [CrossRef] [Green Version]
- Harvey, J.W.; Bencala, K.E. The effect of streambed topography on surface-subsurface water exchange in mountain catchment. Water Resour. Res. 1993, 29, 89–98. [Google Scholar] [CrossRef]
- Cardenas, M.B. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resour. Res. 2015, 51, 3601–3616. [Google Scholar] [CrossRef]
- Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, A.M.; Packmann, A.I.; Packman, A.I.; Packmann, A.I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 2016, 14, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Gandy, C.J.; Smith, J.W.N.; Jarvis, A.P. Attenuation of mining-derived pollutants in the hyporheic zone: A review. Sci. Total Environ. 2007, 373, 435–446. [Google Scholar] [CrossRef]
- Jaeger, A.; Posselt, M.; Betterle, A.; Schaper, J.; Mechelke, J.; Coll, C.; Lewandowski, J. Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream. Environ. Sci. Technol. 2019, 53, 2383–2395. [Google Scholar] [CrossRef] [Green Version]
- Schaper, J.L.; Posselt, M.; Mccallum, J.L.; Banks, E.W.; Hoehne, A.; Meinikmann, K.; Shanafield, M.A.; Batelaan, O.; Lewandowski, J.J. Hyporheic exchange controls fate of trace organic compounds in an urban stream. Environ. Sci. Technol. 2018, 52, 12285–12294. [Google Scholar] [CrossRef] [Green Version]
- Nagorski, S.A.; Moore, J.N. Arsenic mobilization in the hyporheic zone of a contaminated stream. Water Resour. Res. 1999, 35, 3441. [Google Scholar] [CrossRef]
- Boulton, A.J.; Datry, T.; Kasahara, T.; Mutz, M.; Stanford, J.A. Ecology and management of the hyporheic zone: Stream-groundwater interactions of running waters and their floodplains. J. N. Am. Benthol. Soc. 2010, 29, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Hester, E.T.; Gooseff, M.N. Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environ. Sci. Technol. 2010, 44, 1521–1525. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, M.H.; Cardenas, M.B.; Buttles, J.; Kessler, A.J.; Cook, P.L.M. Hyporheic hotmoments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resour. Res. 2017, 53, 1–21. [Google Scholar] [CrossRef]
- Reeder, W.J.; Quick, A.M.; Farrell, T.B.; Benner, S.G.; Feris, K.P.; Tonina, D. Spatial and temporal dynamics of dissolved oxygen concentrations and bioactivity in the hyporheic zone. Water Resour. Res. 2018, 2112–2128. [Google Scholar] [CrossRef]
- Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, J.H.; Arnon, S. The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resour. Res. 2016, 52, 613–615. [Google Scholar] [CrossRef]
- Cardenas, M.B. Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophys. Res. Lett. 2008, 35, L08402. [Google Scholar] [CrossRef]
- Gomez-Velez, J.D.; Harvey, J.W.; Cardenas, M.B.; Kiel, B. Denitrification in the Mississippi River network controlled by flow through river bedforms. Nat. Geosci. 2015, 8, 941–945. [Google Scholar] [CrossRef]
- Elliott, H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour. Res. 1997, 33, 123–136. [Google Scholar] [CrossRef]
- Kessler, A.J.; Cardenas, M.B.; Cook, P.L.M. The negligible effect of bed form migration on denitrification in hyporheic zones of permeable sediments. J. Geophys. Res. 2015, 120, 1–11. [Google Scholar] [CrossRef]
- Elliott, A.H.; Brooks, N.H.; Elliott, H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resour. Res. 1997, 33, 137–151. [Google Scholar] [CrossRef]
- Ahmerkamp, S.; Winter, C.; Janssen, F.; Kuypers, M.M.M.; Holtappels, M. The impact of bedform migration on benthic oxygen fluxes. J. Geophys. Res. Biogeosciences 2015, 120, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Cardenas, M.B.; Wang, L.; Mohrig, D. Ripple effects: Bedform morphodynamics cascading into hyporheic zone biogeochemistry. Water Resour. Res. 2019. [Google Scholar] [CrossRef]
- Precht, E.; Franke, U.; Polerecky, L.; Huettel, M. Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol. Oceanogr. 2004, 49, 693–705. [Google Scholar] [CrossRef]
- Ahmerkamp, S.; Winter, C.; Krämer, K.; Beer, D.D.; Janssen, F.; Friedrich, J.; Kuypers, M.M.M.; Holtappels, M. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol. Oceanogr. 2017, 62, 1935–1954. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, J.C.; Latimer, G.J.; Smith, R.K. Bedform mobility and benthic oxygen uptake. Water Res. 1993, 27, 1545–1558. [Google Scholar] [CrossRef]
- De Falco, N.; Boano, F.; Bogler, A.; Bar-Zeev, E.; Arnon, S. Influence of stream-subsurface exchange flux and bacterial biofilms on oxygen consumption under nutrient-rich conditions. J. Geophys. Res. Biogeosci. 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Arnon, S.; Avni, N.; Gafny, S. Nutrient uptake and macroinvertebrate community structure in a highly regulated Mediterranean stream receiving treated wastewater. Aquat. Sci. 2015, 77, 623–637. [Google Scholar] [CrossRef]
- Devlin, J.F. HydrogeoSieveXL: An Excel-based tool to estimate hydraulic conductivity from grain-size analysis. Hydrogeol. J. 2015, 23, 837–844. [Google Scholar] [CrossRef]
- Klute, A.A. Methods of Soil Analysis. Part 1, 2nd ed.; Inc. Publishers: Madison, WI, USA, 1986. [Google Scholar]
- Salehin, M.; Packman, A.I.; Paradis, M. Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resour. Res. 2004, 40, W11504. [Google Scholar] [CrossRef]
- Fox, A.; Boano, F.; Arnon, S. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resour. Res. 2014, 50, 1–13. [Google Scholar] [CrossRef]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef] [PubMed]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125. [Google Scholar]
- Rao, A.M.F.; McCarthy, M.J.; Gardner, W.S.; Jahnke, R.A. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Cont. Shelf Res. 2007, 27, 1801–1819. [Google Scholar] [CrossRef]
- Polerecky, L.; Franke, U.; Werner, U.; Grunwald, B.; de Beer, D. High spatial resolution measurement of oxygen consumption rates in permeable sediments. Limnol. Oceanogr. 2005, 3, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, S.G. A comment on the use of flushing time, residence time, and age as transport time scales. Limnol. Oceanogr. 2002, 47, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.D.; Wilson, J.L.; Cardenas, M.B. Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects. Water Resour. Res. 2012, 48, W09533. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Wilson, J.L.; Haggerty, R. Residence time of bedform-driven hyporheic exchange. Adv. Water Resour. 2008, 31, 1382–1386. [Google Scholar] [CrossRef]
- Packman, A.I.; Brooks, N.H. Hyporheic exchange of solutes and colloids with moving bed forms. Water Resour. Res. 2001, 37, 2591–2605. [Google Scholar] [CrossRef]
- Van Den Berg, J. Bedform migration and bed-load transport in some rivers and tidal environments. Sedimentology 1987, 34, 681–698. [Google Scholar] [CrossRef]
- Bradley, R.W.; Venditti, J.G. Reevaluating dune scaling relations. Earth Sci. Rev. 2017, 165, 356–376. [Google Scholar] [CrossRef]
- Ernstsen, V.; Winter, C.; Becker, M.; Bartholdy, J. Tide-controlled variations of primary- and secondary-bedform height: Innenjade tidal channel (Jade Bay, German Bight). In River, Coastal and Estuarine Morphodynamics; Vionnet, C., Perillo, G., Latrubesse, E., Garcia, M., Eds.; Taylor & Francis Group: London, UK, 2009; pp. 779–786. [Google Scholar]
- Mehmet, Y. On the determination of ripple geometry. J. Hydraul. Eng. 1985, 111, 1148–1155. [Google Scholar]
- Packman, A.; Salehin, M.; Zaramella, M. Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. J. Hydraul. Eng. 2004, 130, 647–656. [Google Scholar] [CrossRef]
- Arnon, S.; Gray, K.A.; Packman, A.I. Biophysicochemical process coupling controls nitrate use by benthic biofilms. Limnol. Oceanogr. 2007, 52, 1665–1671. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A.; Marion, A. Combined role of advective pumping and mechanical dispersion on time scales of bed form-induced hyporheic exchange. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.H.; Packman, A.I. Coupled stream-subsurface exchange of colloidal hematite and dissolved zinc, copper, and phosphate. Environ. Sci. Technol. 2005, 39, 6387–6394. [Google Scholar] [CrossRef]
- Jerolmack, D.; Mohrig, D. Interactions between bed forms: Topography, turbulence, and transport. J. Geophys. Res. Earth Surf. 2005, 110, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fox, A.; Packman, A.I.; Boano, F.; Phillips, C.B.; Arnon, S. Interactions between suspended kaolinite Deposition and hyporheic exchange flux under losing and gaining flow conditions. Geophys. Res. Lett. 2018, 45, 4077–4085. [Google Scholar] [CrossRef]
- Hartwig, M.; Borchardt, D. Alteration of key hyporheic functions through biological and physical clogging along a nutrient and fine-sediment gradient. Ecohydrology 2014, 8, 961–975. [Google Scholar] [CrossRef]
- Gomez-velez, J.D.; Harvey, J.W. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. Geophys. Res. Lett 2014, 41, 1–10. [Google Scholar] [CrossRef]
- Singh, T.; Wu, L.; Gomez-Velez, J.D.; Lewandowski, J.; Hannah, D.M.; Krause, S. Dynamic hyporheic zones: Exploring the role of peak flow events on bedform-induced hyporheic exchange. Water Resour. Res. 2019, 55, 218–235. [Google Scholar] [CrossRef]
Run No./Set No. | Stream Water Velocity (m·s−1) | Bed Form Height (cm)1 | Bed Form Celerity (m·h−1)1 | Water Depth (cm) | Temp. (°C) | EC (µS·cm−1) | Turbidity (NTU) |
---|---|---|---|---|---|---|---|
1/1 | 0.16 | 1.50 (N/A) | 0.000 (N/A) | 14.2 | 24.9 | 291 | 62 |
7/2 | 0.16 | 1.94 (N/A) | 0.000 (N/A) | 14.2 | 24.3 | 339 | 189 |
3/1 | 0.25 | 1.13 (0.42) | 0.035 (0.000) | 13.8 | 24.9 | 322 | 126 |
8/2 | 0.25 | 1.13 (0.42) | 0.049 (0.000) | 13.7 | 24.1 | 345 | 137 |
4/1 | 0.28 | 1.37 (0.51) | 0.140 (0.004) | 14.2 | 24.4 | 326 | 141 |
9/2 | 0.29 | 1.37 (0.51) | 0.135 (0.006) | 13.9 | 24.8 | 355 | 308 |
2/1 | 0.32 | 1.38 (0.46) | 0.394 (0.110) | 14.2 | 24.5 | 299 | 267 |
5/1 | 0.32 | 1.38 (0.46) | 0.275 (0.045) | 14.2 | 24.4 | 331 | 230 |
10/2 | 0.33 | 1.38 (0.46) | 0.375 (0.105) | 13.9 | 24.2 | 359 | 375 |
6/1 | 0.36 | 1.41 (0.60) | 0.699 (0.287) | 14.3 | 24.4 | 335 | 311 |
11/2 | 0.37 | 1.41 (0.60) | 0.644 (0.080) | 13.8 | 24.6 | 362 | 478 |
Run No./Set No. | Oxygen Influx (mmol·m²·d−1) 1 | Oxygen Outflux (mmol·m²·d−1) 1 | Modelled Oxygen Influx (mmol·m²·d−1) |
---|---|---|---|
1/1 | 28.48 (2.32) | 20.07 (1.64) | 14.67 |
7/2 | 29.59 (2.41) | 18.98 (1.55) | 10.55 |
3/1 | 47.48 (2.96) | 34.69 (2.16) | 11.09 |
8/2 | 48.11 (2.99) | 34.92 (2.18) | 15.66 |
4/1 | 47.91 (7.92) | 34.74 (5.75) | 14.43 |
9/2 | 47.50 (7.85) | 33.02 (5.46) | 11.69 |
2/1 | 65.01 (0.38) | 45.84 (0.27) | 21.32 |
5/1 | 65.80 (0.39) | 49.13 (0.29) | 17.00 |
10/2 | 65.73 (0.39) | 50.69 (0.30) | 14.48 |
6/1 | 42.48 (7.78) | 31.43 (5.75) | 12.16 |
11/2 | 42.91 (7.86) | 35.52 (6.50) | 9.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolke, P.; Teitelbaum, Y.; Deng, C.; Lewandowski, J.; Arnon, S. Impact of Bed Form Celerity on Oxygen Dynamics in the Hyporheic Zone. Water 2020, 12, 62. https://doi.org/10.3390/w12010062
Wolke P, Teitelbaum Y, Deng C, Lewandowski J, Arnon S. Impact of Bed Form Celerity on Oxygen Dynamics in the Hyporheic Zone. Water. 2020; 12(1):62. https://doi.org/10.3390/w12010062
Chicago/Turabian StyleWolke, Philipp, Yoni Teitelbaum, Chao Deng, Jörg Lewandowski, and Shai Arnon. 2020. "Impact of Bed Form Celerity on Oxygen Dynamics in the Hyporheic Zone" Water 12, no. 1: 62. https://doi.org/10.3390/w12010062
APA StyleWolke, P., Teitelbaum, Y., Deng, C., Lewandowski, J., & Arnon, S. (2020). Impact of Bed Form Celerity on Oxygen Dynamics in the Hyporheic Zone. Water, 12(1), 62. https://doi.org/10.3390/w12010062