Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Data Collection
2.3. Regression Subset Analysis for Input Variable Selection
2.4. The Multilayer Perceptron for Groundwater Level Modeling
2.5. Long Short-Term Memory Neural Networks
2.6. Convolutional Nural Networks
2.7. Hyperparameter Tuning of ANNs
2.8. Model Evaluation Criteria
3. Results and Discussion
3.1. Descriptive Statistics of Input Variables
3.2. Regression Subset Analyis for Variable Selection
3.3. The 1-Input Variable Model
3.4. The 2-Input Variable Models
3.5. The 3-Input Variable Models
3.6. The 4-Input Variable Models
3.7. Model Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Somers, G.; Mutch, J. Application of Numerical Modeling To Groundwater Assessment and Management in Prince Edward Island. In Proceedings of the 57th Canadian Geotechnical Conference, Quebec, QC, Canada, 24–26 October 2004; Volume 57, pp. 2–9. [Google Scholar]
- Department of Communities, Land and Environment. Watershed Management on PEI|Prince Edward Island. Available online: https://www.princeedwardisland.ca/en/information/communities-land-and-environment/watershed-management-pei (accessed on 22 November 2019).
- Gao, Z.; Long, D.; Tang, G.; Zeng, C.; Huang, J.; Hong, Y. Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China’s Yangtze River basin. J. Hydrol. 2017, 550, 478–496. [Google Scholar] [CrossRef]
- USGS. How does Groundwater Pumping Affect Streamflow? Available online: https://www.sciencedaily.com/releases/2012/11/121116124557.htm (accessed on 12 December 2019).
- Francis, R.M. Hydrogeology of the winter river basin-Price Edward Island. Department of the Environment, PEI report; 1989. Available online: http://www.gov.pe.ca/photos/original/cle_WinterR.pdf (accessed on 22 November 2019).
- Mohammadi, K. Groundwater Table Estimation Using MODFLOW and Artificial Neural Networks. In Practical Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 127–138. [Google Scholar]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Kumar, A.; Panda, D.K. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi–Surua Inter-basin of Odisha, India. J. Hydrol. 2013, 495, 38–51. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. A comparison of numerical and machine-learning modeling of soil water content with limited input data. J. Hydrol. 2016, 543, 892–909. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Zhang, N.; Shen, S.L.; Zhou, A.; Xu, Y.S. Investigation on Performance of Neural Networks Using Quadratic Relative Error Cost Function. IEEE Access 2019, 7, 106642–106652. [Google Scholar] [CrossRef]
- Sarir, P.; Shen, S.L.; Wang, Z.F.; Chen, J.; Horpibulsuk, S.; Pham, B.T. Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Eng. Comput. 2019, 1–11. [Google Scholar] [CrossRef]
- Atangana Njock, P.G.; Shen, S.L.; Zhou, A.; Lyu, H.M. Evaluation of soil liquefaction using AI technology incorporating a coupled ENN/t-SNE model. Soil Dyn. Earthq. Eng. 2020, 130, 105988. [Google Scholar] [CrossRef]
- Elbaz, K.; Shen, S.-L.; Zhou, A.; Yuan, D.-J.; Xu, Y.-S. Optimization of EPB Shield Performance with Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm. Appl. Sci. 2019, 9, 780. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Jha, M.K. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment Sasmita. Hydrogeol. J. 2013, 21, 1865–1887. [Google Scholar] [CrossRef]
- Kouziokas, G.N.; Chatzigeorgiou, A.; Perakis, K. Multilayer Feed Forward Models in Groundwater Level Forecasting Using Meteorological Data in Public Management. Water Resour. Manag. 2018, 32, 5041–5052. [Google Scholar] [CrossRef]
- Juan, C.; Genxu, W.; Tianxu, M. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. J. Hydrol. 2015, 529, 1211–1220. [Google Scholar]
- Coulibaly, P.; Anctil, F.; Aravena, R.; Bobée, B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 2001, 37, 885–896. [Google Scholar] [CrossRef]
- Mueller, J.; Park, J.; Sahu, R.; Varadharajan, C.; Arora, B.; Faybishenko, B.; Agarwal, D. Surrogate Optimization of Deep Neural Networks for Groundwater Predictions. arXiv 2019, preprint. arXiv:1908.10947. [Google Scholar]
- Maheshwara Babu, B.; Srinivasa Reddy, G.; Satishkumar, U.; Kulkarni, P. Simulation of Groundwater Level Using Recurrent Neural Network (RNN) in Raichur District, Karnataka, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3358–3367. [Google Scholar]
- Lähivaara, T.; Malehmir, A.; Pasanen, A.; Kärkkäinen, L.; Huttunen, J.M.J.; Hesthaven, J.S. Estimation of groundwater storage from seismic data using deep learning. Geophys. Prospect. 2019, 67, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Ravansalar, M.; Rajaee, T. Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environ. Monit. Assess. 2015, 187, 366. [Google Scholar] [CrossRef]
- Krishna, B.; Satyaji Rao, Y.R.; Vijaya, T. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrol. Process. 2008, 22, 1180–1188. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Coulibaly, P.; Daliakopoulos, I.N. Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation. J. Hydroinformatics 2008, 10, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [Google Scholar] [CrossRef]
- Safeeq, M.; Fares, A. Groundwater and Surface Water Interactions in Relation to Natural and Anthropogenic Environmental Changes. In Emerging Issues in Groundwater Resources; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 289–326. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.K.; Yoon, H. Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors. Hydrogeol. J. 2019, 27, 567–579. [Google Scholar] [CrossRef]
Variable | Maximum | Minimum | Mean ± SD | Skewness |
---|---|---|---|---|
Mean temperature (°C) | 26.5 | −22.5 | 6.41 ± 10.4 | −0.26 |
Dew point temperature (°C) | 21.8 | −28.0 | 2.66 ± 10.2 | −0.33 |
Relative humidity (%) | 98.3 | 46.7 | 77.7 ± 10.2 | −0.37 |
Heat degree days (°C) | 40.5 | 0.00 | 12.0 ± 9.90 | 0.40 |
Reference evapotranspiration (mm/day) | 7.26 | 0.08 | 2.05 ± 1.50 | 0.74 |
Precipitation (mm) | 103.8 | 0.00 | 2.41 ± 6.14 | 5.72 |
The Baltic River watershed daily groundwater levels (m) | 18.6 | 13.1 | 14.6 ± 0.93 | 0.58 |
Stream flow for the Baltic River watershed (m3/s) | 51.0 | 0.548 | 2.65 ± 3.21 | 7.57 |
Stream level for the Baltic River watershed (m) | 2.14 | 0.50 | 0.68 ± 0.15 | 2.99 |
The Long Creek watershed daily groundwater levels (m) | 18.1 | 9.16 | 12.8 ± 1.58 | 0.06 |
Stream flow for the Long Creek watershed (m3/s) | 42.4 | 0.46 | 2.00 ± 2.21 | 7.04 |
Stream level for the Long Creek watershed (m) | 2.84 | 1.06 | 1.25 ± 0.17 | 2.51 |
Watershed | Number of Variables | Variables | R2 |
---|---|---|---|
Baltic River | 1 | Stream level | 0.51 |
Stream flow | 0.28 | ||
2 | Stream level and stream flow | 0.63 | |
Stream level and precipitation | 0.51 | ||
3 | Stream level, stream flow and evapotranspiration | 0.66 | |
Stream level, stream flow and Mean temperature | 0.64 | ||
4 | Stream level, stream flow, heat degree days and evapotranspiration | 0.66 | |
Stream level, stream flow, mean temperature and evapotranspiration | 0.66 | ||
Long Creek | 1 | Stream level | 0.49 |
Stream flow | 0.36 | ||
2 | Stream level and Dew point temperature | 0.55 | |
Stream level and dew heat degree days | 0.55 | ||
3 | Stream level, mean temperature and evapotranspiration | 0.57 | |
Stream level, stream flow and heat degree days | 0.57 | ||
4 | Stream level, dew point temperature, relative humidity, evapotranspiration | 0.59 | |
Stream level, relative humidity, mean temperature and evapotranspiration | 0.58 |
Watersheds | No. of Variables | Method | Training Loss | Validation Loss | Training RMSE | Validation RMSE | R2 |
---|---|---|---|---|---|---|---|
Baltic River | 1 | MLP | 0.084 | 0.082 | 0.567 | 0.558 | 0.65 |
LSTM | 0.083 | 0.074 | 0.557 | 0.530 | 0.66 | ||
CNN | 0.010 | 0.010 | 0.556 | 0.550 | 0.66 | ||
Long Creek | MLP | 0.086 | 0.110 | 0.957 | 1.169 | 0.63 | |
LSTM | 0.085 | 0.110 | 0.973 | 1.173 | 0.62 | ||
CNN | 0.013 | 0.017 | 0.948 | 1.180 | 0.63 | ||
Baltic River | 2 | MLP | 0.081 | 0.072 | 0.560 | 0.512 | 0.66 |
LSTM | 0.083 | 0.076 | 0.561 | 0.531 | 0.66 | ||
CNN | 0.011 | 0.010 | 0.549 | 0.549 | 0.66 | ||
Long Creek | MLP | 0.081 | 0.107 | 0.929 | 1.180 | 0.64 | |
LSTM | 0.083 | 0.108 | 0.940 | 1.210 | 0.64 | ||
CNN | 0.011 | 0.018 | 0.898 | 1.215 | 0.65 | ||
Baltic River | 3 | MLP | 0.079 | 0.065 | 0.545 | 0.474 | 0.69 |
LSTM | 0.079 | 0.067 | 0.539 | 0.483 | 0.69 | ||
CNN | 0.010 | 0.009 | 0.503 | 0.529 | 0.71 | ||
Long Creek | MLP | 0.082 | 0.107 | 0.945 | 1.160 | 0.64 | |
LSTM | 0.083 | 0.110 | 0.943 | 1.203 | 0.63 | ||
CNN | 0.011 | 0.018 | 0.888 | 1.209 | 0.66 | ||
Baltic River | 4 | MLP | 0.079 | 0.064 | 0.543 | 0.471 | 0.69 |
LSTM | 0.077 | 0.066 | 0.534 | 0.480 | 0.69 | ||
CNN | 0.010 | 0.009 | 0.505 | 0.532 | 0.71 | ||
Long Creek | MLP | 0.078 | 0.103 | 0.912 | 1.150 | 0.66 | |
LSTM | 0.080 | 0.106 | 0.916 | 1.200 | 0.67 | ||
CNN | 0.009 | 0.017 | 0.813 | 1.170 | 0.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzaal, H.; Farooque, A.A.; Abbas, F.; Acharya, B.; Esau, T. Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning. Water 2020, 12, 5. https://doi.org/10.3390/w12010005
Afzaal H, Farooque AA, Abbas F, Acharya B, Esau T. Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning. Water. 2020; 12(1):5. https://doi.org/10.3390/w12010005
Chicago/Turabian StyleAfzaal, Hassan, Aitazaz A. Farooque, Farhat Abbas, Bishnu Acharya, and Travis Esau. 2020. "Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning" Water 12, no. 1: 5. https://doi.org/10.3390/w12010005
APA StyleAfzaal, H., Farooque, A. A., Abbas, F., Acharya, B., & Esau, T. (2020). Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning. Water, 12(1), 5. https://doi.org/10.3390/w12010005