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Abstract: The existence of noise has great influence on the real features of observed time 

series, thus noise reduction in time series data is a necessary and significant task in many 

practical applications. When using traditional de-noising methods, the results often cannot 

meet the practical needs due to their inherent shortcomings. In the present paper, first a set 

of key but difficult wavelet de-noising problems are discussed, and then by applying 

information entropy theories to the wavelet de-noising process, i.e., using the principle of 

maximum entropy (POME) to describe the random character of the noise and using 

wavelet energy entropy to describe the degrees of complexity of the main series in original 

series data, a new entropy-based wavelet de-noising method is proposed. Analysis results 

of both several different synthetic series and typical observed time series data have verified 

the performance of the new method. A comprehensive discussion of the results indicates 

that compared with traditional wavelet de-noising methods, the new proposed method is 

more effective and universal. Furthermore, because it uses information entropy theories to 

describe the obviously different characteristics of noises and the main series in the series 

data is observed first and then de-noised, the analysis process has a more reliable physical 

basis, and the results of the new proposed method are more reasonable and are the global 

optimum. Besides, the analysis process of the new proposed method is simple and is easy 
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to implement, so it would be more applicable and useful in applied sciences and practical 

engineering works. 

Keywords: time series analysis; de-noising; information entropy; wavelet transform; 

uncertainty 

 

1. Introduction 

Time series analysis is not only a very important technique for identifying different components and 

revealing variation characters of the variable studied, but also is the basis of many simulation and 

forecast works, thus it has been widely used in many different fields of applied researches and 

engineering practical works presently, such as electronics, business, medicine, physics, earth sciences, 

hydraulic engineering and among others [1-8]. However, due to the influence of many random and 

uncertain natural factors as well as the subjective factors, observed time series data always include 

many noises, which contaminate the real series data and cause many difficulties in the time series data 

analysis process, e.g., periods’ identification, parameters’ estimation, simulation and forecasting,  

etc. [9-14]. Due to the existence of noises, it is not an easy task to get accurate time series analysis 

results in practical works. As far as the noises are concerned, they are generally classified as either 

additive or dynamical, and additive noises are sometimes called measurement noises [15-16]. 

Comparatively, the dynamical noises are generated by certain physical mechanisms, so they usually 

show good correlations (or maybe constants sometimes) and can be identified and modified easily; but 

the additive noises often show random characters and are difficult to be analyzed and described 

accurately. In the present paper, on the basis of the different physical generation mechanisms between 

real series and noises in observed time series data [15], the components which have pure random 

characters and are generated by random and uncertain factors are defined as noises, and they are the 

main focus to be studied in this paper.  

In order to obtain accurate and reliable time series data analysis results in practical works, noises 

reduction or removing should precede other tasks in the time series analysis process. At present, there 

have been a number of de-noising methods. Among them, one kind of de-noising methods is to 

establish suitable deterministic models to simulate the observed time series first, and then regard the 

difference between observed series and simulated series as noises [17-18]. However, many real natural 

evolution mechanisms cannot be understood completely now and sometimes even know nothing, so 

the real models are unknown in these cases and the de-noising results are unreliable. Another 

important kind of de-noising methods is based on spectral analysis [19]. Since most of time series in 

nature show many complex variation characters [20-22] (e.g., the hydrologic time series are the most 

representative because of usually showing extremely non-stationary and nonlinear characters which 

result from spatial and dynamical heterogeneities and also showing multi-temporal scale variation 

characters [9,23,24], so they will be the examples in ―cases studies‖ in section 5), these traditional 

spectral analysis-based methods (Wiener filtering, Kalman filtering, Fourier transform and among 

others) have many disadvantages and also cannot meet the practical needs enough. For examples, 

Wiener filtering method and Kalman filtering method are only suitable for linear natural systems, and 
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the analysis results depend on the establishment of state space functions to a great extent; and Fourier 

transform method is just suitable for stationary and linear time series analysis. In recent years, wavelet 

analysis (WA) used widely is a new and powerful method of time series analysis in theory [25-30], by 

which noises in time series data can also be reduced or removed. However, when using the wavelet  

de-noising method, there are some key but difficult problems as discussed in section 2, and most of 

them have not been solved presently, so the de-noising results of it are also not as good as expected in 

many practical works.  

To distinguish the new method which would be proposed in this paper, the de-noising methods 

mentioned above are called ―traditional de-noising methods‖. The discussion results about these 

traditional de-noising methods indicate that: (1) most of the de-noising methods used presently have 

their own applicable conditions and also have many disadvantages, which would limit their uses and 

cause the difficulties in getting accurate analysis results in practice; (2) for certain time series data, the 

de-noising results vary with the methods used, sometimes analysis results of certain methods show 

unreasonable phenomena or even wrong completely, for examples, the separated noises show good 

auto-correlations, the de-noised series data losses some real components, etc.; (3) comparatively, the 

wavelet de-noising method is much more applicable and more powerful than others, since it can 

identify the variation characters of time series data both in temporal and frequency domains. However, 

several key problems impact its effectiveness and accuracies; and (4) for the de-noising methods used 

presently, they do not take the physical difference between the characters of real series data and noises 

into account effectively. However, the physical processes of the variable studied are always the most 

concerned in practical works, especially in hydraulic engineering and earth sciences. In this paper, the 

real series data in observed time series is called ―main series‖, i.e., the observed time series data is 

composed of the ―main series‖ and ―noises‖. If based on the different characters of noises and main 

series to de-noising, the analysis process would have more reliable physical basis and the results could 

become more accurate and reasonable. 

 Information entropy is a powerful and universal theoretical concept used for measures of disorder, 

uncertainty and complexity [31-35]. For a given system whose exact description is not precisely 

known, the entropy is defined as the amount of information needed to exactly specify the state of the 

system, given what we know about the system. Nowadays, information entropy theories have been 

applied across physics, mathematics, information theory and many other branches of applied sciences 

and engineering, and more and more applications have indicated the effectiveness and universality of it, 

for examples, the principle of maximum entropy (POME) [36] is widely used to estimate parameters 

and determine the probability distribution of the random variables studied [37-45], and maximum 

entropy spectral analysis (MESA) [46] has been a commonly used method for identifying the dominant 

periodicities of time series data [47-52]. In this paper, for the main objective of proposing a new 

wavelet de-noising method which is more applicable and effective in applied sciences and practical 

works, the information entropy theories are employed to the time series de-noising process mainly for 

describing the different characters of noises and main series and then providing reliable physical basis 

to the de-noising. To begin with, several key but difficult problems about wavelet de-noising are 

discussed, and the suggestions and approaches for solving them are put forward, then by using 

information entropy theories both to describe random characters of the noises and degrees of 

complexity of the main series in observed time series data, respectively, a new entropy-based wavelet 
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de-noising method is proposed. Finally, noises in some different synthetic series and typical observed 

time series data are separated by using the new proposed method and other traditional wavelet  

de-noising methods, and the results are compared and discussed in detail. The results indicate that 

better performances of the new method proposed in de-noising of time series data. 

The paper is organized as follows. After the introduction, traditional wavelet de-noising methods 

are reviewed in Section 2, and then a set of key but difficult wavelet de-noising problems are discussed 

in detail in Section 3; in Section 4, the new entropy-based wavelet de-noising method is proposed by 

applying information entropy theories to de-noising process; some examples are analyzed by different 

methods for verifying the new method proposed in Section 5. Finally, a set of discussions about the 

new method conclude the paper. 

2. Review of Traditional Wavelet De-noising Methods 

2.1. Wavelet Transform (WT) 

Just like other transform techniques (Fourier, Bessel, etc.), the wavelet transform also has its own 

base function, i.e., the mother wavelet function. The mother wavelet functions must fulfill certain strict 

mathematical conditions called ―admissibility conditions‖ as shown in Equation (1) in the temporal 

domain and Equation (2) in the frequency domain [24, 26]: 

( ) 0t dt



  (1)  

2
ˆ ( )

C d

 







    (2)  

where ˆ ( )   is the Fourier transform of the mother wavelet function ψ(t) at the frequency ω. 

Defining L
2
(R) as a measurable square integral function space in real axis, the signal f(t)∈ L

2
(R) 

can be analyzed by the continuous wavelet transform (CWT) as: 
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where ψ
*
(t) is complex conjugate; ψa,b(t) is the wavelet function gained by translating and expanding 

ψ(t); a is temporal scale factor and b is time position factor; Wf(a,b) are wavelet coefficients. Along 

with the varying values of parameters a and b, Wf(a,b) can exhibit good localized characters both in the 

temporal and frequency domains [25-30]. Therefore, variation characters of signal f(t) in multi-

temporal scales can be understood by the CWT. 

In practice, observed time series data are usually discrete signals like f(k△ t) (k = 1, 2, …, N; △ t is 

time interval), so a and b become discrete, and we then get the discrete wavelet transform (DWT) of 

the signal f(k△ t) as: 
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where a0 (a0>1) and b0 are constants. In practical works, the dyadic DWT is usually used by assigning 

a0 = 2 and b0 = 1. The integer j is the temporal scale factor which is analogous to the parameter a in  

Equation (3), and the integer k is the time position factor which is analogous to parameter b. 

When the mother wavelet function satisfies more restrictive conductions called ―regularity 

conditions‖ in Equation (5), it is said to have the regularity of order N [24,27]: 

( ) 0,    1, , 1kt t dt k N



     (5)  

If the wavelet function fulfills the condition in Equation (5), the signal can be reconstructed by 

using the wavelet coefficients Wf(a,b) with Equation (6) or Wj,k with Equation (7). Besides, different 

components in signal f(t) can also be reconstructed by DWT: 
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2.2. Traditional Wavelet De-noising Methods 

The main series and noises in observed time series data are generated by different physical 

mechanisms and have obviously different variation characters, therefore, the values and variation 

characters of wavelet coefficients describing them are also different. Based on this difference, proper 

thresholds can be used to adjust the wavelet coefficients of DWT, and then the main series and noises 

can be separated by using the wavelet reconstruction method. This is the basic idea of wavelet 

threshold de-nosing [9,19,53,54]. There are four main and key problems in the wavelet de-noising 

process, namely: (1) choice of reasonable wavelet functions and (2) choice of proper time scale levels, 

both of which mainly determine the accuracy and reasonability of the DWT results; (3) determination 

of accurate thresholds under each time scale level by certain methods; and (4) choice of suitable 

thresholding rules. The analysis process of wavelet de-noising methods will be described in detail in 

Section 4, together with the information entropy analysis process. 

 Although being effective and powerful in theory, the wavelet threshold de-noising methods have 

several main defects when used in practice, for example, in runoff series data analysis as discussed in 

Section 5, and each of them is discussed in the following paragraphs. 

The first is probability description of noises. When using traditional wavelet de-noising methods in 

practice, noises in observed time series data are generally thought of as following second-order 

stationary process, such as following normal probability distribution, so the standard deviation or 

variance of noises are mainly used to estimate the noise level and to estimate proper threshold values. 

However, in practice, the fact is that what type of probability distribution noises follow in observed 

time series data is usually unknown, e.g., noises in hydrologic series data generally do not follow 

second-order stationary process, but rather follow skewed probability distributions. Therefore, it is 

unreasonable and also not enough to only take the second-order stationary process (i.e., standard 

deviation or variance) into account when de-noising time series data. In order to obtain accurate and 

reliable de-noising results, certain approaches (such as information entropy), which can conveniently 
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analyze and describe the random characters of noises following different probability distributions, 

should be given and introduced into the wavelet de-noising process. 

The second is the accuracy of threshold estimation methods. Many traditional methods have their 

own disadvantages [9], so the analysis results obtained using them are not accurate and are also 

different to each other. Among the numerous threshold estimation methods, the universal threshold 

algorithm (UT) takes a prominent position, as it offers many optimality properties [55]. The basic idea 

of UT algorithm is estimating the thresholds values based on the series’ length and noises’ standard 

derivation. In practical applications, the UT algorithm is often found to be too conservative, i.e., it 

removes too much of the underlying data, thereby causing blur in the output [55]. Another important 

method is the Stein unbiased risk estimation (SURE) algorithm, which is an unbiased estimator of the 

mean-squared error (MSE) of a given estimator [56], and to improve the performances of SURE 

algorithm, the heuristic SURE algorithm that was also proposed later. Besides, the minimax algorithm 

(MIN) is also a typical threshold estimation method which is a minimum estimator of the MSE of a 

given estimator by using regression models to describe the time series data analyzed [57]. The theories 

about these typical methods have been elaborated in many papers [19,56-60], from where it can be 

found that the basic idea of the SURE and MIN algorithm is to first establish an estimator (also called 

risk function) which is generally the MSE function describing the difference between the original 

series data and the de-noised series data, i.e., the variance of the noises separated; and then the SURE 

algorithm or MIN algorithm can be used to estimate the minimum values of MSE function; finally the 

results corresponding to the minimum MSE are considered the best thresholds estimation results. But 

in practical works, the fact is that both the probability distribution and the amount of noise in observed 

time series data are unknown, while the methods above just take the second-order stationary process of 

noises into consideration, so their analysis results lack a physical basis and are unreasonable to a 

certain extent. Furthermore, just as Jansen and Bultheel pointed out [58]: ―the main challenge with this 

MSE as an objective function is the fact that in real applications, it can never be computed exactly: its 

definition uses the value of the exact, unknown coefficients. In practical situations, this MSE has to be 

estimated‖. Although many other improved threshold estimation methods have been proposed later, in 

essence they are just the same as those three typical methods mentioned above, so their defects are not 

overcome effectively.  

The third is the validity of thresholding rules. No matter whether the hard-thresholding rule or the 

soft-thresholding rule is used as described in Equation (8) and Equation (9), respectively, they each 

have their own disadvantages. Generally, the latter is better than the former because the dealt wavelet 

coefficients W
’
j,k in Equation (8) is discontinuous at the points of both –Tj and +Tj. However, the soft-

thresholding rule also has its own defects, i.e., there are constant deviations between Wj,k and the real 

W
’
j,k, which will influence the precision of wavelet reconstruction results. In order to overcome the 

defects of hard- and soft-thresholding rules, many mid-thresholding rules have been put forward, 

mainly by combining the hard- and soft-thresholding rules together using different means [61-63]. In 

these improved mid-thresholding rules, some new parameters are generally used to coordinate the 

proportional relations of hard- and soft- thresholding rules, which would add to the difficulties of  

de-noising since these parameters are difficult to estimate and determine in practical works. 



Entropy 2009, 11                    

 

 

1129 

Hard-thresholding rule: 
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where Tj is the wavelet coefficient threshold under time scale level j. 

3. Discussions of Several Key Problems Concerning Wavelet De-noising 

In order to propose a new effective wavelet de-noising method, by which more accurate and reliable 

time series data de-noising results can be obtained, especially in practical applied sciences and 

engineering applications, the following main and key problems of wavelet de-noising are discussed in 

detail, and several suggestions and approaches for solving them are also given, which are the choice of 

reasonable wavelet function, choice of proper time scale levels, determination of accurate thresholds 

and choice of suitable thresholding rules, respectively.  

3.1. Choice of Reasonable Wavelet Function 

According to the wavelet analysis theory, it is known that the first and key problem concerning WA 

is how to choose a reasonable mother wavelet function, since the analysis results of time series data 

vary with the wavelet function used. Many papers have discussed this problem [64-66]. In the authors’ 

opinion, the mathematical properties of wavelets should be taken into account first when choosing a 

wavelet function, i.e., it is preferable to first choose progressive, linear phase wavelets; secondly, the 

wavelet chosen should exhibit good localized properties in both the temporal and frequency domains; 

thirdly, the trade-off between time and scale resolutions of the chosen wavelet has to be adapted to the 

analysis process [67]; and fourthly, the chosen wavelet should meet the ―regularity conditions‖ in 

Equation (5) for reconstructing different components in the original series data. The mathematical 

properties of commonly used wavelet functions are summarized in Table 1 [68]. 

Based on the mathematical properties of wavelet functions, a simple method of choice of reasonable 

wavelet function proposed in [69] can be used in this paper, whose basic idea is: first each of the 

wavelet functions is used to separate the main series and noises in the observed time series by DWT, 

and then the similarity degrees between original time series and the main series are compared, and we 

judge whether the characters of the separated noises are purely random or not; finally the most 

reasonable wavelet function can be chosen by comparing the analysis results of these  

wavelet functions. 
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Table 1. Mathematical properties of the mother wavelet functions used commonly. 

Wavelet  

function 
Abbreviation 

Function 

number 

Mathematical properties 

Compactly 

supported 
Symmetry 

Vanishing 

moment 
Orthogonality  

Double-

Orthogonality  

Haar haar  1 + + 1 + + 

Daubechies dbN 10 + − N + + 

Symlets  symN  7 + +* N + + 

Coiflets coifN 5 + +* 2N + + 

Dmeyer dmey 1 + + / + + 

BiorSplines  biorM.N 15 + + M − + 

ReverseBior rbioM.N 15 + + M − + 

Note: ―+‖ means the wavelet function has the corresponding mathematical property, and ―+*‖ means the wavelet function 

has the corresponding similar mathematical property, while ―−‖mean the wavelet function does not have the 

corresponding mathematical property. ―/‖ means that this mathematical property need not be considered. 

3.2. Choice of Proper Time Scale Levels 

As is known to all, the noises and main series in observed time series are generated by different 

physical mechanisms, i.e., the main series are generated by a deterministic physical mechanism, while 

noises are generated by many random and uncertain factors, so they have obviously different variation 

characters. Concretely, the noises show random characters and mainly reflect the inherent uncertainties 

in nature, while the main series are composed of deterministic components and mainly reflect the 

deterministic characters of the variable studied [15-16]. When applying DWT to analyze observed time 

series data, the components under different time scale levels obviously show different characteristics, 

i.e., the main series usually locates in bigger time scale levels and shows low-frequency 

characteristics, while noises usually locate in small time scale levels and show  

high-frequency characters.  

Based on the obviously different characters of the main series and noises, and in order to reduce 

noises in observed time series data effectively, it is suggested that the maximum time scale level be 

determined according to both the time series data analyzed and the scales (i.e., resolution) concerned 

in practical works. For the hydrologic series data whose data points are just dozens or hundreds, the 

maximum time scale level generally can be valued at 2 or 3 in practical hydrologic de-noising works. 

3.3. Determination of Accurate Thresholds 

In order to reduce or remove noises in time series data accurately, by employing information 

entropy theories to the de-noising process, a method of determining accurate wavelet coefficients 

thresholds was proposed in [9] and is used in this paper. The theoretical and physical basis of this 

method is that both the values and variation characters of wavelet coefficients of the main series and 

noises in observed time series data are obviously different, i.e., when applying DWT to the time series 

data analyzed, small wavelet coefficients are assumed to be dominated by noises and carry little useful 

information, but the main series carry all useful information and are concentrated in a limited number 

of big wavelet coefficients [58]. Moreover, from the energy point of view, the energies of the main 

series are concentrated on several time scale levels corresponding to the periods and trends of series 
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data, but the energies of noises scatter in the whole time scales and decrease rapidly as the time scale 

level increases.  

Based on this difference, information entropy can be applied to the wavelet de-noising process. The 

main idea of the method proposed is to use entropy value H obtained by POME [36] to describe the 

random characters of the noises separated, and use wavelet energy entropy (WEE) [70] to describe the 

degrees of complexity of the main series reconstructed first, and then, according to the variations of 

noises’ H and main series’ WEE along with the increasing of wavelet coefficients thresholds, the 

separation process of noises in time series can be described and understood. After the noises are 

removed completely, values of H and WEE would become constants within a certain set of thresholds; 

and these thresholds can be regarded as the most reasonable final results: 

( ) ln( ( ))H f x f x dx   (10)  

2 2

, ,
1 1 1 1 1

ln     / ( ) ( )' '
j jK KM M M

j j j j j j k j k
j j k j k

WEE P P with P E E w w
    

         (11)  

where f(x) is the probability density function used for describing random characters of noises. W’j.k are 

the wavelet coefficients of DWT adjusted by a certain thresholding rule. M is the maximum time scale 

level, and Kj is the number of wavelet coefficients in time scale level j. Besides, although the approach 

used for calculation of entropy value H by POME has been illustrated in many papers, it is described 

briefly again in Appendix A, mainly to help readers understand the new method proposed more clearly, 

and also for keeping the integrity of the contents about wavelet de-noising. 

The information entropy theories are employed to determine wavelet coefficient thresholds for two 

main purposes. The first is to use information entropy theories to describe the obviously different 

characteristics of noises and main series in observed time series data, which can provide a more 

reliable physical basis for the process of threshold estimation and de-noising, so the analysis results 

can be more reasonable in practice. The other purpose is that no matter what probability distribution 

noises follow in the time series data analyzed, i.e., more than just the noises following second-order 

stationary process, and no matter what amount of noises is included in time series data analyzed, they 

can be described and analyzed by POME quantitatively and accurately, so the analysis results can also 

be more reliable, and the new entropy-based wavelet de-noising method proposed in the following can 

become more effective and more universal. 

3.4. Choice of Suitable Thresholding Rules 

In order to overcome the disadvantages of hard- and soft-thresholding rules used commonly, and 

also to avoid the difficulties of parameters estimation in many improved mid-thresholding rules, by 

comprehensive analysis, the Equation (12), which does not include any new parameter, is chosen and 

used in this paper [71]. As shown in Equation (12), the wavelet coefficients are adjusted by using 

themselves and the thresholds, when Tj = 0, it is just the same as Equation (8); and when Tj = 1, it is the 

same as Equation (9). Therefore, the Equation (12) is the combination of both hard- and  
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soft-thresholding rules, and the analysis results by using Equation (12) are continuous and can reduce 

or even remove the constant deviations between Wj,k and real W’j,k: 

, , ,

,

,

,

sgn( )( - )

exp( )'

             0                 

j

j k j k j k j

j k j

j k
j

j k j

T
W W W T

W T
W

T

W T





 

 


 (12)  

4. New Entropy-Based Wavelet De-noising Method 

Based on both the basic idea of wavelet threshold de-noising and the discussion results of four key 

problems about wavelet de-noising above, a new entropy-based wavelet de-noising method is 

proposed as follows: 

(1) Firstly, we choose reasonable wavelet function and determine the proper time scale levels, then 

analyze the time series data by DWT in Equation (4) and obtain high frequency wavelet 

coefficients Wj,k under time scale level j (j = 1, 2, …, M).  

(2) We set the same threshold T for different time scale level j [72] and use a certain small threshold 

T to adjust Wj,k according to Equation (12). Then we use W’j,k to reconstruct the main series by 

Equation (7), and regard the difference between observed time series and reconstructed main 

series as noises. 

(3) We determine the proper probability density function to describe the random characters of 

noises separated by using H in Equation (10), as described in appendix A, and describe the 

complexity degrees of the reconstructed main series by using WEE in Equation (11). 

(4) The threshold value T in step (2) is increased gradually, and for each threshold value, we do the 

same analysis according to the steps (2) and (3), and then get two series of H and WEE values 

corresponding to a set of thresholds.  

(5) After noises in the observed time series are removed completely, both the values of noises’ H 

and the reconstructed main series’ WEE would become constants, so the threshold T
*

 

corresponding to the constants of H and WEE is the most reasonable threshold. 

(6) We use threshold T
*
 to reduce noises in the observed time series data analyzed, and separate the 

main series and noises. 

(7) We judge whether the de-noising results are reasonable or not by using the criterion proposed in 

[9] initially, and moreover, the prior information and experiences about the series data analyzed 

are used to judge the reasonability of the de-noising results further. If not, we do the same 

analysis according to steps (1)-(6), until accurate de-noising results are obtained.  

Besides, the analysis process of time series data by using the new entropy-based wavelet de-noising 

method proposed is also depicted in Figure 1. 
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Figure 1. The analysis process of time series data by the new entropy-based wavelet de-

noising method proposed (in the black pane, the analysis processes are information entropy 

theories based). 
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Yes

Get the final de-noising results of 

the time series data analyzed

No

 

 

As described above, because information entropy theories are mainly used to describe the 

uncertainties of noises and the complexities of main series, and then based on the different characters 

of noises and main series in observed time series data to de-noising, it holds that the new method 

proposed has a reliable physical basis and the analysis results are reasonable and are the global 

optimum. Besides, the analysis process of the new method is simple and is easy to implement, so it is 

more applicable and useful in applied sciences and engineering practice. However, it should be pointed 

out that when using this new method, great attention should be paid to the choice of proper probability 
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distributions to describe noises. In practical works, in order to obtain accurate threshold estimation 

results, on one hand, as much prior information and experience as possible should be used to determine 

the proper probability distribution, which are also very important in the de-noising process by 

traditional wavelet de-noising methods; on the other hand, it is suggested that several probability 

distributions be used together, and by comprehensively comparing the analysis results of different 

distributions, the most reasonable results could be obtained finally. 

Nevertheless, it should also be pointed out that since the basic idea of the new wavelet de-noising 

method proposed is based on the difference of wavelet coefficients’ values and energies about the 

main series and noises in original time series data to de-noising, this new method has its own 

applicable condition: when there are too many noises in the time series data analyzed, i.e., the wavelet 

coefficients of noises are close to or even much bigger than the coefficients of the main series, the 

energy of noises would be much bigger than that of the main series, and the main parts of time series 

data become noises, but not the main series. In these situations, the main series are submerged 

completely in the noises so cannot easily be identified by the new method proposed. Besides, because 

the amounts of real signals in different observed series data are unknown, it is difficult to determine 

the cutoff of SNR (signal to noises ratio) of the applicable condition. But from another point of view, 

in the authors’ opinion, these series greatly contaminated by noises can be regarded as pure random 

series and then analyzed by proper statistical methods, and there is no need to reduce or remove noises 

again in practical works. 

5. Case Studies 

In order to verify the new entropy-based wavelet de-noising method proposed in this paper, both 

synthetic series and observed time series data are analyzed by different methods, and the results are 

compared and discussed in detail, all of which will be done in the following sections. 

5.1. Synthetic Series Analysis 

Two different synthetic series, S1 and S2 for short, were generated by Monte-Carlo method. Among 

them, noises in the S1 series follow a normal probability distribution of N~(0, 5), while noises in the 

S2 series follow a Pearson-III (P-III for short) probability distribution of P~(0, 8, 0.5), and their SNR 

are 9.51 and 6.27, respectively. Since the two synthetic series include different noises, they can be 

used to judge whether the new method proposed is suitable for analyzing different noises or not. 

Moreover, because the real series data in the two synthetic series are known clearly, the de-noised 

series (i.e., the main series) can be compared with the real series data, and the performances of these 

de-noising methods used can be understood further.  

Firstly, the ―db4‖ mother wavelet function is chosen and the maximum time scale level 5 is used, 

then DWT is applied to the two synthetic series. Based on the DWT results, noises in both S1 series 

and S2 series are separated by using the new method proposed, and the results are shown in Figure 2 

and Figure 3, respectively. Besides, the two synthetic series are also analyzed by using three other 

typical wavelet de-noising methods, namely the UT, HSURE (heuristic SURE) and MIN, and the 

statistical characteristic values, including mean ( X ), standard deviation (σ), coefficient of skewness 

(Cs) and the first-order autocorrelation coefficient (r1), of original synthetic series, main series and 
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noises obtained by different methods are calculated and summarized in Table 2 and Table 3, 

respectively. Furthermore, the de-noised series data obtained by different methods are also compared 

with the real series data by using the quantitative indicator of mean square error (MSE) in Equation 

(13), whose value can reflect the similar degrees of two series data to a certain extent: 

2

1

1
( ( ) ( ))

n

i

MSE x i y i
n 

   (13)  

where x(i) and y(i) are the two series data analyzed, and n is the length of series data x(i). 

Table 2. Statistical characteristics of the de-noising results of the S1 series obtained by 

different methods. 

De-noising 

method 
Series’ type 

Statistical characteristic values 

X  σ Cs r1 MSE 

 S1 series 75.05 20.46 −0.005 0.93 37.07 

New method 

proposed 

Main series 73.32 18.85 −0.003 0.98 
8.21 

Noises 1.73 4.91 0.010 0.08 

UT 
Main series 74.27 22.04 0.007 0.92 

21.99 
Noises 0.78 6.65 −0.020 0.42 

HSURE 
Main series 74.46 21.75 0.013 0.97 

17.73 
Noises 0.59 4.01 −0.165 −0.26 

MIN 
Main series 74.53 22.24 0.010 0.96 

10.36 
Noises 0.52 5.44 −0.104 0.26 

Table 3. Statistical characteristics of the de-noising results of the S2 series obtained by 

different methods.  

De-noising 

method 
Series’ type 

Statistical characteristic values 

X  σ Cs r1 MSE 

 S2 series 174.77 

0.0002 

45.60 

0.3138 

−0.02 0.96 

-0.1971 

112.05 

New method 

proposed 

Main series 173.95 

0.0008 

45.09 

0.7490 

−0.02 0.98 

-0.5695 
22.35 

Noises 0.82 

-0.0016 

7.58 

2.2873 

0.51 −0.03 

-0.1011 
UT 

Main series 174.77 44.11 −0.01 0.97 
99.23 

Noises −0.00 10.97 0.39 0.30 

HSURE 
Main series 174.78 44.63 −0.03 0.99 

26.09 
Noises −0.01 8.28 0.35 −0.07 

MIN 
Main series 174.78 44.22 −0.02 0.99 

55.02 
Noises −0.01 9.70 0.38 0.16 
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Figure 2. The synthetic S1 series data (upper) and the de-noising results of S1 series 

(lower) by using the different methods (in synthetic series S1, noises follow a normal 

probability distribution).  
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Figure 3. The synthetic S2 series data (upper) and the de-noising results of S2 series 

(lower) by using the different methods (In synthetic series S2, noises follow a P-III 

probability distribution). 

 

  

By comparing and discussing the analysis results of the two synthetic series comprehensively, it can 

be found that: (1) when using the new method proposed to analyze both the S1 series and the S2 series, 

the statistical characteristic values of original synthetic series and the main series are very close, and 

the noises separated show pure random characters. Taking the S1 series for example, the r1 values of 

S1 series and the main series are 0.93 and 0.98, respectively; while the r1 value of the noises separated 

is 0.08. Besides, the analysis results plotted in Figure 2 and Figure 3 also show that the two de-noised 

series obtained by the new method are very similar to the corresponding real series data, respectively. 

Thus it is thought that the de-noising results are accurate, and which indicate the reliability of the new 

method proposed; (2) no matter whether we reduce normal noises in the S1 series or skewed noises in 
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the S2 series, the analysis results of the new entropy-based wavelet de-noising method are in good 

accord with the criterion proposed in reference [9]. Therefore, it can hold that the new method 

proposed not only has its own effectiveness but also has good universality; (3) noises separated from 

the synthetic series by traditional methods (UT, HSURE and MIN) are different and show good auto-

correlations. For examples, r1 values of noises separated from S1 series are 0.42, –0.26 and 0.26 

corresponding to UT, HSURE and MIN, respectively. It means that the analysis results of traditional 

wavelet de-noising methods are not reasonable and these results should be viewed with caution when 

used; (4) for the de-noised results of the S1 series and the S2 series by the new method, the values of 

MSE are 8.21 and 22.35, respectively, which are the lowest in all the analysis results of the methods 

used. It means that the de-noised series obtained by the new method proposed are the most similar to 

the real series data, so the analysis results are the most accurate and reliable; (5) by comparing with the 

analysis results of different de-noising methods, it shows much better performances of the new method 

proposed in de-noising than other traditional wavelet de-noising methods.  

5.2. Observed Time Series Analysis 

Two hydrologic time series data, RS1 and RS2 for short, are also analyzed by different methods to 

further verify the performances of the new method proposed. The two hydrologic series data have 

complex non-stationary and multi-temporal scale characters and are the most representative observed 

time series data, so in the authors’ opinion, it is deemed that if suitable for analyzing the two 

hydrologic series data here, the new method proposed can also be used to analyze other observed time 

series data accurately in practical works.  

As illustrated in [9], RS1 presents 20 years (1978-1997) of monthly runoff series measured at the 

Dashankou hydrologic station at Kaidu River in Xinjiang province in the northwest of China. There 

are two recharge sources about Kaidu River, one is snowmelt from Tianshan Mountain, mainly 

happening from March to April every year, and the other is rainfall, mainly happening at August every 

year. Consequently two flood seasons happen in every year, and the RS1 series has two obvious 

periods: about 6 months and 12 months. RS2 presents 54 years (1950-2003) of annual runoff series 

measured at the Lijin hydrologic station at the estuary area of the Yellow River watershed in the north 

of China. The Yellow River, the second largest river in China, is an important water source in North 

China. After the 1970s, because of the great influence of human activities and climatic conditions 

changes in this area, runoff in the middle and lower Yellow River became seasonal and even presents a 

cutting-off trend, which causes serious sediment problems and eco-environment problems. Hydrologic 

regimes in the estuary area are controlled by the whole Yellow River watershed. In present studies, it 

is shown that the runoff in the Yellow River mainly has four dominant periods: 3, 7, 11 and 18 years.  

Analysis of the variation characters (such as periods) of RS1 and RS2 series have great significance 

in understanding the physical hydrologic processes and for water resources management, as well as 

many other practical hydrologic works. However, due to the influence of noises, the periods of the two 

hydrologic series data cannot be identified accurately when analyzing the raw series data directly, 

especially when analyzing the RS2 series. If the raw series data is de-noised first by a certain method 

and then periods could be identified accurately, it can be deemed that the de-noising results are reliable 

and the corresponding de-noising method is effective. 
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Figure 4. The de-noising results of RS1 series and RS2 series by different methods (in 

Figure 4, ―Method*‖ is the method proposed in reference [9]). 

  

 

 

According to the analysis results in [9], here, the P-III probability distribution is used to describe 

the random characters of noises in the RS1 series, and the normal probability distribution is used to 

describe the random characters of noises in the RS2 series. Then the two hydrologic series data are 

analyzed by the new method proposed and three other typical methods (UT, HSURE and MIN). 

During the analysis process, the ―dmey‖ wavelet is chosen and the maximum time scale level 3 is used 

to analyze the RS1 series; and the ―db2‖ wavelet is chosen and the maximum time scale level 2 is used 

to analyze the RS2 series. Finally, the de-noising results of the two observed hydrologic series by 

different methods are depicted in Figure 4, and the characteristic values about each of these series data 

and calculated and summarized in Table 4 and Table 5, respectively. 
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Table 4. Statistical characteristics of the de-noising results of the RS1 series obtained by 

different methods. 

De-noising method Series types 
Statistical characteristic values 

X  σ r1 Cs 

 Original series (RS1) 101.55 61.24 0.73 0.99 

New method proposed 
Main series 101.53 57.26 0.84 0.82 

Noises 0.02 14.86 −0.11 0.36 

Method* 
Main series 101.53 58.32 0.82 0.77 

Noises 0.02 15.07 −0.16 0.33 

UT 
Main series 101.74 40.97 0.84 0.35 

Noises −0.19 28.08 0.42 1.15 

HSURE 
Main series 101.57 59.14 0.79 0.83 

Noises −0.02 7.00 −0.39 0.29 

MIN 
Main series 101.76 48.24 0.82 0.57 

Noises −0.29 19.42 0.29 0.96 

 

Table 5. Statistical characteristics of the de-noising results of the RS2 series obtained by 

different methods. 

De-noising method Series types 
Statistical characteristic values 

X  σ r1 Cs 

 Original series (RS2) 324.48 194.97 0.64 0.69 

New method proposed 
Main series 323.09 164.26 0.87 0.68 

Noises 1.39 65.37 −0.10 0.14 

Method* 
Main series 322.81 172.39 0.86 0.70 

Noises 1.67 63.31 −0.13 0.11 

UT 
Main series 328.75 150.43 0.91 0.32 

Noises −4.27 88.34 0.34 0.30 

HSURE 
Main series 325.45 179.43 0.79 0.61 

Noises −0.93 44.45 −0.44 0.04 

MIN 
Main series 327.57 165.06 0.81 0.60 

Noises −3.09 61.28 −0.21 0.08 

Note: in Table 4 and Table 5, ―Method*‖ is the method proposed in reference [9]. 

 

Analysis results in Table 4 and Table 5 show that because of the use of Equation (12) to adjust the 

high frequency wavelet coefficients of DWT, the de-noising results of the new method proposed in the 

present paper are a little better than those obtained from [9] and much better than three other 

traditional methods. Besides, analysis results show that the noises separated from RS1 series follow a 

skew probability distribution since the value of Cs is bigger than 0.3. Furthermore, the statistical 

characteristic values of original observed series data, the main series and noises accord well with the 

criterion proposed in [9], so it can be deemed that the de-noising results of the two hydrologic time 
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series data are also reasonable and accurate, and the new method proposed is reliable and effective for 

de-noising. Finally, it can be found that although the real series data in the two observed hydrologic 

series data are unknown, Figure 4 shows that compared with the analysis results of other methods, 

trends of the de-noised series obtained by the new method proposed are more in accordance with the 

trends of the observed series data as a whole, which means that the new method proposed is 

comparatively more reliable, and moreover, because noises are reduced accurately and reliably, the 

periods of the two observed time series data can be identified accurately, as discussed in [9]. But for 

the de-noised series of other methods as shown in Figure 4, they have a little big difference with the 

de-noised series of the new method, which mean that they also include certain amount of noises or lose 

some real signals, so all the periods cannot be identified by using them. Since the issue of periods’ 

identification is far beyond the scope of the present paper, more details about which can be found in 

detail in reference [9]. 

6. Summary and Conclusions 

The authenticity and reliability of observed time series data are the very important basis of many 

applied research and engineering works. In practice, the existence of noises contaminates the real 

series data and causes many difficulties in time series analysis. When using traditional methods to 

reduce or remove noises in time series data, the results cannot meet the practical needs. In this paper, 

in order to overcome the disadvantages of traditional methods and to obtain accurate de-noising results 

of time series data, by employing information entropy theories to describe the obviously different 

characters of noises and main series, a new entropy-based wavelet de-noising method has been 

proposed. By analyzing both synthetic series and typical observed time series data, the performance of 

the new method proposed has been verified. By comprehensive analysis, the following conclusions 

about the new method proposed can be drawn: first, because of its basis on information entropy 

theories to describe the obvious difference of noises and main series in observed series data and then 

de-noising, the analysis process has a more reliable physical basis and the results of the new method 

are the global optimum in the whole aspect; secondly, compared with traditional methods, the de-

noising results of the new method are more accurate and more reasonable; thirdly, since can be used to 

analyze both normal noises and skewed noises accurately, the new method shows good effectiveness 

and universality; and fourthly, the analysis process of the new method is simple and is easy to 

implement, so it is more applicable and useful in practical applied sciences and engineering works, and 

therefore, it can be used in future practical applications. 

Nevertheless, great attention should be paid to several detailed problems when using the new 

method, such as determination of the proper probability distribution to describe noises, and choice of a 

reasonable wavelet function and time scale levels. Only by analyzing and solving these detailed 

problems accurately, reliable and reasonable de-noising results could be obtained finally. 
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Appendix A: Calculation of Entropy Value by using POME 

The principle of maximum entropy (POME), proposed by Jaynes in 1957 [36], is mainly used to 

determine the least biased probability distribution of the random variable studied. By using POME, it 

is thought that the minimally prejudiced assignment of probabilities can be done since which 

maximizes the entropy subject to the given information. 

Defining the probability density function (pdf) of random variable x as f(x), based on the observed 

series sample X, the mathematical programming problem in Equation (A.1) can be established to 

determine the expression of f(x), given that the necessary m linearly independent constraint conditions 

Pi have been obtained as shown in detail in reference [37]: 

1 1 1

max ( ) ln[ ( )]

( ) 1

( ) ( ) [ ( )]

. .
( ) ( ) [ ( )]

( ) ( ) [ ( )]

j j j

m m m

H f x f x dx

f x dx

f x p x dx E p x P

s t
f x p x dx E p x P

f x p x dx E p x P

 

 

  




 




 















 
(A.1)  

We establish Lagrange function of the mathematical programming problem in Equation (A.1) as: 
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where (λ0 – 1), λ1, …, λm are the Lagrange multipliers. 

The variational derivative of the fonctionelle L(f) is calculated as: 
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According to the equations set in Equation (A.3), the final results of Equation (A.4) can be obtained, 

which is just the solution of the mathematical programming problem in Equation (A.1): 
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(A.4)  

The corresponding expression of entropy value H can be calculated by using Equation (A.5): 
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By substituting the Equation (A.4) into Equation (A.1), we then get the relationship expression of 

the Lagrange multipliers as: 
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The first-order partial derivatives of these Lagrange multipliers are calculated using Equation 

(A.7): 
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 (A.7)  

and the high-order partial derivatives can be calculated using Equation (A.8): 
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 (A.8)  

By solving Equation (A.7) and Equation (A.8) together, the values of Lagrange multipliers (λ0 – 

1), λ1, …, λm can be estimated, and then the expression of f(x) in Equation (A.4) can be determined, 

and also the entropy value H in Equation (A.5) can be calculated finally. This is the main analysis 

process of POME for determining the pdf of the random variable x studied. For the normal probability 

distribution and P-III distribution used in this paper, the brief processes of estimation of entropy values 

H are summarized in Table A1. 

Table A1.  Entropy functions of normal probability distribution and P-III probability 

distribution. 

Analysis process 
Probability distribution type 

Normal distribution P-III distribution 

Probability density function 
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