Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.2.1. Meteorological Data
2.2.2. Runoff Data
2.2.3. Land-Use Data
2.3. Methods
2.3.1. Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI)
2.3.2. Time-Delay Correlation Coefficient
2.3.3. Potential Evaporation Calculation Model
2.3.4. Drought Propagation Intensity Index (DPI)
3. Results
3.1. Interannual and Interdecadal Response Characteristics
3.1.1. Response of Hydrological Drought to Upstream Meteorological Drought
3.1.2. Response of Hydrological Drought to Meteorological Drought in Different Tributaries
3.2. Seasonal Response Characteristics
3.2.1. Response of Hydrological Drought to Meteorological Drought in the Upstream
3.2.2. Response of Hydrological Drought to Meteorological Drought in Different Tributaries
3.3. Monthly Response of Hydrological Drought to Meteorological Drought
4. Discussion
4.1. Comparison with Previous Studies
4.2. Impact of Climate Change on Meteorological Drought propagating to Hydrological Drought
4.3. Impact of Land-Use on Meteorological Drought Propagating to Hydrological Drought
4.4. Impact of Climate and Land-Use Change Interactions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goddard, S.; Harms, S.K.; Reichenbach, S.E.; Tadesse, T.; Waltman, W.J. Geospatial decision support for drought risk management. Commun. ACM 2003, 46, 35–37. [Google Scholar] [CrossRef]
- Panagoulia, D.; Dimou, G. Definitions and Effects of Droughts. In Proceedings of the Conference on Mediterranean Water Policy: Building on Existing Experience, Mediterranean Water Network, Valencia, Spain, 16–18 April 1998; Volume I. General Lecture, Invited Presentation, Research Gate. [Google Scholar]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Wang, J.S.; Li, Y.H.; Wang, R.Y.; Feng, J.Y.; Zhao, Y.X. Preliminary analysis on the demand and review of progress in the field of meteorological drought research. J. Arid Meteorol. 2012, 30, 497–508. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis, Summary for Policymakers, Contribution of WGI to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis, Summary for Policymakers; IPCC WGI Fourth Report; IPCC: Paris, France, 2007. [Google Scholar]
- Zhai, L.X.; Feng, Q. Dryness/Wetness Climate Variation Based on Standardized Precipitation Index in Northwest China. J. Nat. Resour. 2011, 26, 847–857. [Google Scholar]
- Li, X.; Meshgi, A.; Babovic, V. Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int. J. Climatol. 2016, 36, 4831–4846. [Google Scholar] [CrossRef]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Dong, Q.J.; Xie, P. Advances in hydrological drought research. J. China Hydrol. 2014, 34, 1–7. [Google Scholar]
- Pi, W.Y.; Zhao, X.H.; Zhu, X.P. Relationship between hydrologic drought and meteorological drought in the upstream of Fenhe River. Water Resour. Power 2018, 36, 19–22. [Google Scholar]
- Panagoulia, D. Definitions, implications and coping strategies of droughts, Keynote Speech. In Proceedings of the 2nd International Conference on Environment—Sustainable Management of Water Resources-Advanced Technologies for Water Saving of Association of Civil Engineers of Greece and Europe, Athens, Greece, July 2007. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Zhu, G.F.; Yang, L.; Qin, D.H.; Tong, H.l.; Liu, Y.F.; Li, J.F. Spatial and temporal variation of drought index in a typical steep alpine terrain in Hengduan Mountains. J. Mt. Sci. 2016, 13, 1186–1199. [Google Scholar] [CrossRef]
- Svoboda, M.D.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Mo, K.C. Model-based drought indices over the United States. J. Hydrometeorol. 2008, 9, 1212–1230. [Google Scholar] [CrossRef]
- Shao, J.; Li, Y.; Song, S.B. New computing method for standardized runoff index and its application. J. Nat. Disasters 2014, 23, 79–87. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhou, J.J.; Zhang, H.W.; Wang, B.; Cao, J.J. Temporal and spatial patterns of climate drought-wet and drought event based on Standard Precipitation Index in Shiyang River Basin. Acta Ecol. Sin. 2017, 37, 996–1007. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Zhang, B.; Zhou, D.; Zhang, Y.Z.; Wang, G.Q.; Tang, M. Analysis of drought characteristics of the east China monsoon area based on standardized precipitation evapotranspiration index. J. Nat. Resour. 2016, 31, 1185–1197. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Menon, P.; Inkane, P.M.; Krishnan, U.; Sable, S.T. Trends and variability of meteorological drought over the districts of India using standardized precipitation index. Hydrol. Earth Syst. Sci. 2017, 126, 120. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Modeling the spatio-temporal meteorological drought characteristics using the standardized precipitation index (SPI) in Raya and its environs. Northern Ethiopia. Earth Syst. Environ. 2018, 2, 281–292. [Google Scholar] [CrossRef]
- Wang, K.; Li, T.; Wei, J. Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices. Water 2019, 11, 190. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Chen, Y.; Pan, Y.; Feng, R. Identification of the Space-Time Variability of Hydrological Drought in the Arid Region of Northwestern China. Water 2019, 11, 1051. [Google Scholar] [CrossRef]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef] [Green Version]
- He, F.L.; Hu, C.H.; Wang, J.J.; Wang, Y.L. Analysis of meteorological and hydrological drought in the Yellow River Basin during the past 50 years based on SPI and SDI. Geogr. Geo-Inf. Sci. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Liu, L.; Hong, Y.; Christopher, N.B.; Yong, B.; Mark, A.S.; James, E.H. Hydro-Climatological Drought Analyses and Projections Using Meteorological and Hydrological Drought Indices: A Case Study in Blue River Basin, Oklahoma. Water Resour. Manag. 2012, 26, 2761–2779. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Wei, W.; Shi, P.J.; Zhao, J.; Wang, X.F. Spatial relationship between elevation, vegetation cover and Landscape types in Shiyang River Basin. Arid Land Geogr. 2012, 35, 91–98. [Google Scholar] [CrossRef]
- Xiao, D.N.; Li, X.Y.; Song, D.M. Landscape changes and ecological reconstruction in Minqin Huqu oasis. Acta Ecol. Sin. 2005, 25, 2477–2483. [Google Scholar]
- Li, L.P.; Liu, M.C. Changing trend and features of the runoff from mountain areas of rivers in Shiyang River drainage basin. J. Soil Water Conserv. 2011, 25, 58–63. [Google Scholar] [CrossRef]
- Liu, M.C. Analysis and assessment of climatic dry and wet conditions in Shiyang River Basin. Chin. J. Ecol. 2006, 25, 880–884. [Google Scholar] [CrossRef]
- Feng, J.Y.; Wang, J.S.; Han, Y.X. Impact of the Surface Runoff of Inland Rivers on the Spring Wheat Yields in Hexi Corridor of Gansu. Arid Meteorol. 2004, 22, 17–20. [Google Scholar]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality? J. Clim. 2012, 25, 5512–5523. [Google Scholar] [CrossRef]
- Husak, G.J.; Michaelsen, J.; Funk, C. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol. 2007, 27, 935–944. [Google Scholar] [CrossRef]
- Ye, Z.W. Flood and drought change based SPI analysis in the developing coastal region of Jiangsu Province: A case study in Yancheng City. Sci. Geogr. Sin. 2014, 34, 479–487. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, B. Analysis of Drought-flood Spatial-temporal Characteristics Based on Standard Precipitation Index in East Region of Gansu in Recent 40 Years. J. Nat. Resour. 2012, 27, 2135–2144. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–23 January 1993; American Meteorological Society: Boston, MA, USA, 1993; Volume 17, pp. 179–184. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Hassan, I.H.; Mdemu, M.V.; Shemdoe, R.S.; Stordal, F. Drought pattern along the coastal forest zone of Tanzania. Atmos. Clim. Sci. 2014, 4, 369–384. [Google Scholar] [CrossRef]
- Wu, S.H.; Yin, Y.H.; Zheng, D.; Yang, Q.Y. Climate change in the Tibetan Plateau during the last three decades. Acta Geogr. Sin. 2005, 60, 3–11. [Google Scholar]
- Wang, Q.; Zhang, M.J.; Pan, S.k. Spatiotemporal variation patterns of potential evapotranspiration in the Yangtze River basin of China. Chin. J. Ecol. 2013, 32, 1292–1302. [Google Scholar]
- Allen-Wardell, G.; Bernhardt, P.; Bitner, R.; Burquez, A. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yield. Soc. Conserv. Biol. 2008, 12, 8–17. [Google Scholar] [CrossRef]
- Zhang, M.J.; Li, R.X.; Jia, W.X.; Wang, X.F. Temporal and spatial changes of potential evaporation in Tianshan mountains from 1960 to 2006. Acta Geogr. Sin. 2009, 64, 798–806. [Google Scholar]
- Feng, K.P.; Tian, J.C. Estimation of evapotranspiration in Ningxia by Hargreaves equation. J. Arid Land Resour. Environ. 2014, 28, 100–105. [Google Scholar]
- Zhang, L.L. The Change of Water Yield in the Upstream of Shiyang River and Its Response to Climate and Land Use Change Based on InVEST; Northwest Normal University: Lanzhou, China, 2007. [Google Scholar]
- Zhou, J.J.; Shi, W.; Shi, P.J.; Kong, L.G.; Jia, Z.P. Characteristics of mountainous runoff and its responses to climate change in the upper reaches of Shiyang river basin during 1956–2009. J. Lanzhou Univ. Nat. Sci. 2012, 48, 27–34. [Google Scholar]
- Zhou, J.J.; Shi, P.J.; Shi, W. Temporal and Spatial Characteristics of Climate Change and Extreme Dry and Wet Events in Shiyang River Basin from 1960 to 2009. J. Nat. Resour. 2012, 27, 143–153. [Google Scholar]
- Li, Y.G.; He, J.N.; Li, X. Hydrological and meteorological droughts in the Red River Basin of Yunnan Province based on SPEI and SDI Indices. Prog. Geogr. 2016, 35, 758–767. [Google Scholar] [CrossRef]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. Simulation of future climate scenarios with a weather generator. Adv. Water Resour. 2011, 34, 448–467. [Google Scholar] [CrossRef]
- Liu, C.-y.; Zhao, J.; Liu, Y.-y.; Wei, W. Remote Sensing Estimation of Evapotranspiration Quantity and Analysis of Space-time Structure over Shiyang River Basin. Remote Sens. Land Resour. 2011, 23, 117–122. [Google Scholar]
- Wang, Y.C.; Zhao, J.; Fu, J.W.; Wei, W. Quantitative assessment of water conservation function and spatial pattern in Shiyang River basin. Acta Ecol. Sin. 2018, 38, 4637–4648. [Google Scholar] [CrossRef]
- He, J.S.; Lin, H.X. Introduction to Water Resource; China Agricultural University Press: Beijing, China, 2006. [Google Scholar]
- Pan, H.X.; Zhu, G.F.; Zhang, Y.; Guo, H.W.; Yong, L.L.; Wan, Q.Z.; Ma, H.Y.; Li, S. Spatial and temporal variations of relative soil moisture in China’s farmland. Acta Geogr. Sin. 2019, 74, 117–130. [Google Scholar] [CrossRef]
- Mo, G.Y. Runoff Response to the Climate and Land Use Change in the Long Tan Basin; Guangxi University: Nanning, China, 2018. [Google Scholar]
- Peleg, N.; Fatichi, S.; Paschalis, A.; Molnar, P.; Burlando, P. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J. Adv. Model. Earth Syst. 2017, 9, 1595–1627. [Google Scholar] [CrossRef]
- Li, X.; Babovic, V. A new scheme for multivariate, multisite weather generator with inter-variable, inter-site dependence and inter-annual variability based on empirical copula approach. Clim. Dyn. 2019, 52, 2247–2267. [Google Scholar] [CrossRef]
- Li, X.; Babovic, V. Multi-site multivariate downscaling of global climate model outputs: An integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula Approach. Clim. Dyn. 2019, 52, 5775–5799. [Google Scholar] [CrossRef]
Tributaries | Hydrological Station | Latitude | Longitude |
---|---|---|---|
Xida River | Xida | 38°3′00″ | 101°22′59″ |
Dongda River | Shagousi | 38°1′00″ | 101°57′00″ |
Xiying River | Jiutiaoling | 37°52′00″ | 102°3′00″ |
Jinta River | Nanying Reservoir | 37°48′00″ | 102°31′00″ |
Zamu River | Zamusi | 37°42′00″ | 102°34′00″ |
Huangyang River | Huangyang | 37°34′00″ | 102°43′00″ |
Gulang River | Gulang | 37°25′59″ | 102°54′00″ |
Dajing River | Dajingxia | 37°22′59″ | 103°21′00″ |
Index Range | SPI and SRI Level |
---|---|
(−1,0) | Mild drought |
(−1.5,−1] | Moderate drought |
(−2,−1.5] | Severe drought |
(−∞,−2] | Extreme drought |
Index Range | Level | Index Range | Level |
---|---|---|---|
1 | Peer-to-peer | ||
(1,1.1] | Mildly strong | [0.9,1) | Mildly weak |
(1.1,1.2] | Moderately Strong | [0.8,0.9) | Moderately weak |
(1.2,1.3] | Extra strong | [0.7,0.8) | Extra weak |
(+∞,1.3) | Extremely strong | (0,0.7) | Extremely weak |
Items | Indexes | Xida | Dongda | Xiying | Jinta | Zamu | Huangyang | Gulang | Dajing |
---|---|---|---|---|---|---|---|---|---|
Change Tendency Rate | SPI12 | 0.138 | 0.098 | 0.102 | 0.120 | 0.100 | 0.115 | 0.215 | 0.202 |
SRI12 | 0.129 | 0.129 | −0.004 | - | −0.018 | −0.156 | - | −0.134 | |
CV | SPI12 | 0.381 | 0.384 | 0.41 | 0.424 | 0.383 | 0.476 | 0.424 | 0.417 |
SRI12 | 0.516 | 0.575 | 0.488 | - | 0.463 | 0.427 | - | 0.413 | |
Correlation Coefficient | 0.55 ** | 0.66 ** | 0.675 ** | 0.52 ** | 0.58 ** | 0.299 * | 0.53 ** | 0.52 ** |
Items | Indexes | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
CV | SPI3 | 0.532215 | 0.374438 | 0.470314 | 0.550405 |
SRI3 | 0.432726 | 0.498215 | 0.346708 | 0.411916 | |
Correlation Coefficients | SPI3 and SRI3 | 0.47 ** | 0.66 ** | 0.72 ** | 0.24 |
SPI3 and winter SRI3 | 0.213 | 0.393 ** | 0.452 ** | 0.24 |
Period | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
1960s | 0.433488 | 0.855159 | 0.681394 | 0.32863 |
1970s | 0.847836 | 0.763629 | 0.747062 | 0.586071 |
1980s | 1.470081 | 3.348155 | 0.687449 | 0.878939 |
1990s | 0.773624 | 0.380279 | 0.643143 | 0.742972 |
2000s | 0.976068 | 0.842752 | Extremely strong | 0 |
1961–2016 | 0.838034 | 0.812942 | 0.669722 | 0.605535 |
Season | Xida | Dongda | Xiying | Jinta | Zamu | Huangyang | Gulang | Dajing | |
---|---|---|---|---|---|---|---|---|---|
Spring | SPI | 0.07 | 0.06 | 0.07 | 0.08 | 0.05 | 0.05 | 0.09 | 0.08 |
SRI | 0 | 0.31 | −0.08 | - | −0.03 | −0.27 | - | −0.14 | |
Summer | SPI | 0.1 | 0.07 | 0.06 | 0.08 | 0.06 | 0.08 | 0.13 | 0.12 |
SRI | 0.17 | −0.04 | −0.02 | - | −0.01 | −0.09 | - | −0.15 | |
Autumn | SPI | 0.03 | 0.02 | 0.08 | 0.04 | 0.05 | 0.11 | 0.17 | 0.18 |
SRI | 0.05 | 0.12 | 0.08 | - | 0.07 | −0.1 | - | −0.04 | |
Winter | SPI | 0.23 | 0.18 | 0.19 | 0.21 | 0.23 | 0.4 | 0.39 | 0.39 |
SRI | 0.15 | 0.25 | 0.15 | - | 0.18 | −0.72 | - | 0.2 |
River | K = 0 | K = 1 | K = 2 | K = 3 |
---|---|---|---|---|
Upstream | 0.329 ** | 0.357 ** | 0.242 ** | 0.157 ** |
Xida | 0.218 ** | 0.238 ** | 0.170 ** | 0.074 |
Dongda | 0.281 ** | 0.249 ** | 0.155 ** | 0.084 * |
Xiying | 0.290 ** | 0.265 ** | 0.179 ** | 0.130 ** |
Jinta | 0.242 ** | 0.253 ** | 0.203 ** | 0.143 ** |
Zamu | 0.251 ** | 0.275 ** | 0.246 ** | 0.155 ** |
Huangyang | 0.335 ** | 0.320 ** | 0.223 ** | 0.171 ** |
Gulang | 0.346 ** | 0.205 ** | 0.156 ** | 0.088 ** |
Dajing | 0.254 ** | 0.272 ** | 0.136 ** | 0.095 * |
Xida | Dongda | Xiying | Jinta | Zamu | Huangyang | Gulang | Dajing |
---|---|---|---|---|---|---|---|
31.65 | 37.74 | 37.65 | 35.67 | 40.75 | 32.96 | 29.33 | 25.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, Q.; Wang, L.; Lei, L.; Huang, M.; Xiang, J.; Feng, W.; Zhao, Y.; Xue, D.; Liu, C.; et al. Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains. Water 2019, 11, 1602. https://doi.org/10.3390/w11081602
Zhou J, Li Q, Wang L, Lei L, Huang M, Xiang J, Feng W, Zhao Y, Xue D, Liu C, et al. Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains. Water. 2019; 11(8):1602. https://doi.org/10.3390/w11081602
Chicago/Turabian StyleZhou, Junju, Qiaoqiao Li, Lanying Wang, Li Lei, Meihua Huang, Juan Xiang, Wei Feng, Yaru Zhao, Dongxiang Xue, Chunfang Liu, and et al. 2019. "Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains" Water 11, no. 8: 1602. https://doi.org/10.3390/w11081602