Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment
Abstract
:1. Introduction
2. Material and Methods
2.1. Constructed Wetland Design
2.2. Water Sampling and Physicochemical Analysis
2.3. Analysis of AMF Communities
2.3.1. DNA Extraction from Plant Roots
2.3.2. PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE)
2.3.3. Sequencing of DGGE Bands
2.4. DGGE Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Carvalho, L.M.; Correia, P.M.; Caçador, I.; Martins-Loução, M.A. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol. Fertil. Soils 2003, 38, 137–143. [Google Scholar] [CrossRef]
- D’Souza, J. Arbuscular mycorrhizal diversity from mangroves: A review. In Recent Advances on Mycorrhizal Fungi; Pagano, M.C., Ed.; Springer International Publishing: Basel, Switzerland, 2016; pp. 109–116. [Google Scholar]
- Gupta, N.; Bihari, K.M.; Sengupta, I. Diversity of arbuscular mycorrhizal fungi in different salinity of mangrove ecosystem of Odisha. India. Adv. Plants Agric. Res. 2016, 3, 19–23. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Ban, Y.H.; Jiang, Y.H.; Zhang, X.L.; Liu, X.Y. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review. Pedosphere 2016, 26, 592–617. [Google Scholar] [CrossRef]
- Borde, M.; Dudhane, M.; Kulkarni, M. Role of arbuscular mycorrhizal fungi (amf) in salinity tolerance and growth response in plants under salt stress conditions. In Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials; Varma, A., Prasad, R., Tuteja, N., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Hashema, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd-Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef]
- Oyewole, B.O.; Olawuyi, O.J.; Odebode, A.C.; Abiala, M.A. Influence of Arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnol. Rep. 2017, 14, 8–15. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Q.; Ling, W.; Zhu, X. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J. Hazard. Mater. 2011, 185, 703–709. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.A.; Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ. Sci. Pollut. Res. 2016, 23, 6940–6950. [Google Scholar] [CrossRef]
- Mohammad, A.; Mittra, B. Effects of inoculation with stress adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum Sudanese Staph. seedlings under salinity and heavy metal stress conditions. Arch. Agron. Soil Sci. 2013, 59, 173–183. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Dong, J.W.; Tan, S.K. Constructed wetlands for wastewater treatment in cold climate—A review. J. Environ. Sci. 2017, 57, 293–311. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-56670-526-4. [Google Scholar]
- Calheiros, C.S.C.; Almeida, C.M.R.; Mucha, A.M. Chapter 8: Multiservices and functions of constructed wetlands. In Wetland Function, Services, Importance and Threats; Halicki, W., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 269–298. ISBN 978-1-53613-562-6. [Google Scholar]
- Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed Wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water 2018, 10, 678. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Chandra, H.; Kalra, S.J.S.; Mishra, P.; Khan, H.; Yadav, P. Plant–microbe interaction in aquatic system and their role in the management of water quality: A review. Appl. Water Sci. 2017, 7, 1079–1090. [Google Scholar] [CrossRef]
- Truu, M.; Juhanson, J.; Truu, J. Microbial biomass, activity and community composition in constructed wetlands. Sci. Total Environ. 2009, 407, 3958–3971. [Google Scholar] [CrossRef] [PubMed]
- Fester, T. Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microb. Biotechnol. 2013, 6, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, Y.; Jiang, Y.; Zhang, X.; Li, J.; Ban, Y. Arbuscular mycorrhizal fungi in two vertical-flow wetlands constructed for heavy metal-contaminated wastewater bioremediation. Environ. Sci. Pollut. Res. 2018, 25, 12830–12840. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.C.; Butler, R.H.; Madole, G. Some observations on the vertical distribution of vesicular arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soils. Mycologia 1993, 85, 547–550. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Bessa, V.S.; Mesquita, R.B.R.; Brix, H.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol. Eng. 2015, 79, 1–7. [Google Scholar] [CrossRef]
- APHA. Water Works Association/Water Environment Federation. In Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association/American: Washington, DC, USA, 1998. [Google Scholar]
- Liang, Z.; Drijber, R.A.; Lee, D.J.; Dwiekat, I.M.; Harris, S.D.; Wedin, D.A. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biol. Biochem. 2008, 40, 956–966. [Google Scholar] [CrossRef] [Green Version]
- Simon, L.; Lalonde, M.; Bruns, T.D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 1992, 58, 291–295. [Google Scholar] [Green Version]
- Helgason, T.; Daniell, T.J.; Husband, R.; Fitter, A.H.; Young, J.P.W. Ploughing up the wood-wide web? Nature 1998, 394, 431. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; De Souza, F.A.; Van Veen, J.A. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol. Ecol. 2002, 11, 571–581. [Google Scholar] [CrossRef]
- Cornejo, P.; Azcón-Aguilar, C.; Barea, J.M.; Ferrol, N. Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol. Lett. 2004, 241, 265–270. [Google Scholar] [CrossRef]
- Henriques, I.S.; Alves, A.; Tacão, M.; Almeida, A.; Cunha, A.; Correia, A. Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 2006, 68, 139–148. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1963. [Google Scholar]
- Pielou, E.C. Ecological Diversity; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop Production—FAO, Irrigation and Drainage Paper 48; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Calheiros, C.S.C.; Almeida, S.I.; Brix, H.; Rangel, A.O.S.S.; Castro, P.M.L. Assessment of culturable bacterial endophytic communities colonizing Canna flaccida inhabiting a wastewater treatment constructed wetland. Ecol. Eng. 2017, 98, 418–426. [Google Scholar] [CrossRef]
- Metcalf & Eddy; Tchobanoglous, G.; David Stensel, H.; Tsuchihashi, R.; Burton, F.L. Wastewater Engineering Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Wang, Y.; Huang, Y.; Qiu, Q.; Xin, G.; Yang, Z.; Shi, S. Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS ONE 2011, 6, e24512. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, Q.; Yang, Z.; Hu, Z.; Tam, N.F.Y.; Xin, G. Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 2010, 331, 181–191. [Google Scholar] [CrossRef]
- D’Souza, J.; Rodrigues, B.F. Seasonal diversity of arbuscular mycorrhizal fungi in mangroves of Goa, India. Int. J. Biodivers. 2013, 1–7. [Google Scholar] [CrossRef]
- Sorrell, B.K.; Brix, H. Methods in Biogeochemistry of Wetlands. Soil Science Society of America. In Gas Transport and Exchange through Wetland Plant Aerenchyma; DeLaune, R.D., Reddy, K.R., Richardson, C.J., Megonigal, J.P., Eds.; Soil Science Society of America: Madison, WI, USA, 2014; pp. 177–196. [Google Scholar]
- Wang, Y.; Qiu, Q.; Li, S.; Xin, G.; Tam, N.F. Inhibitory effect of municipal sewage on symbiosis between mangrove plants and arbuscular mycorrhizal fungi. Aquat. Biol. 2014, 20, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.Y.; Sun, X.; Guo, L.D. Seasonality and host preference of arbuscular mycorrhizal fungi of five plant species in the inner Mongolia steppe, china. Braz. J. Microbiol. 2011, 42, 57–65. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Dai, Y.; Liu, Q.; Tang, J.; Bian, X.; Chen, X. Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: A meta-analysis. Plant Soil 2015, 389, 361–374. [Google Scholar] [CrossRef]
- Austin, G.; Yu, K. Constructed Wetlands and Sustainable Development, 1st ed.; Routledge: London, UK, 2016; ISBN 9781315694221. [Google Scholar] [CrossRef]
- Kubitzki, K. The families and genera of vascular plants. In Flowering Plants, Monocotyledons: Lilianae (Except Orchidaceae); Kubitzki, K., Huber, H., Rudall, P.J., Stevens, P.S., Stiitzel, T., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-08377-8. [Google Scholar]
Season/ Year | TSS (mg/L) | BOD5 (mg/L) | COD (mg/L) | PO43- (mg/L) | NH4+ (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | |
C1 | 46 ± 23 | 9 ± 4 | 37 ± 28 | 3 ± 1 | 73 ± 74 | 7 ± 5 | 5.4 ± 6.0 | 1.5 ± 0.5 | 7.5 ± 1.9 | 3.8 ± 1.5 |
H2 | 297 ± 237 | 15 ± 9 | 386 ± 182 | 15 ± 4 | 1214 ± 685 | 41 ± 15 | 32.0 ± 6.0 | 16.1 ± 2.7 | 19.3 ± 13.3 | 15.1 ± 12.5 |
C2 | 105 ± 87 | 16 ± 15 | 86 ± 48 | 13 ± 6 | 261 ± 105 | 34 ± 18 | 13.1 ± 5.3 | 5.1 ± 0.7 | 12.5 ± 17.6 | 7.0 ± 9.4 |
H3 | 148 ± 35 | 13 ± 6 | 265 ± 212 | 13 ± 5 | 885 ± 733 | 26 ± 2 | 27.3 ± 6.2 | 8.9 ± 2.2 | 67.6 ± 39.9 | 26.0 ± 28.3 |
C3 | 31 ± 7 | 4 ± 1 | 123 ± 94 | 15 ± 11 | 258 ± 154 | 36 ± 21 | 25.5 ± 7.6 | 4.7 ± 2.1 | 66.1 ± 26.2 | 25.1 ± 12.1 |
Season/Year | Diversity Indexes | Species Richness | |||||||
---|---|---|---|---|---|---|---|---|---|
H | J | S | |||||||
CI | CF | W | CI | CF | W | CI | CF | W | |
C1 | 0.83 | 0.78 | * | 0.74 | 0.75 | * | 13 | 11 | * |
H2 | 0.94 | 0.30 | * | 0.87 | 0.36 | * | 12 | 7 | * |
C2 | n.d. | 0.63 | 0.53 | n.d. | 0.58 | 0.59 | 2 | 12 | 8 |
H3 | 0.72 | 0.57 | * | 0.76 | 0.57 | * | 9 | 10 | * |
C3 | 0.11 | 0.60 | n.d. | 0.13 | 0.63 | n.d. | 7 | 9 | 3 |
Plant Species | Season/Year | Band Number | Phylogenetic Affiliation | Accession No. | Closest Relative (Accession No.) | Similarity (%) |
---|---|---|---|---|---|---|
C. indica | C1 | 1 | Acaulospora sp. | KJ639002 | Uncultured Acaulospora (JN559796) | 99 |
C3 | 7 | Glomus sp. | KJ639009 | Uncultured Glomus (JN788351) | 97 | |
H3 | 4 | Glomus sp. | KJ639003 | Uncultured Glomus (HF913474) | 100 | |
H3 | 5 | Glomus sp. | KJ639006 | Uncultured Glomus (AY641821) | 96 | |
C. flaccida | H2 | 2 | Rhizophagus sp. | KJ639008 | Uncultured Rhizophagus (KF134509) | 100 |
C3 | 8 | Glomus sp. | KJ639004 | Uncultured Glomus (HG004524) | 99 | |
C3 | 9 | Glomus sp. | KJ639010 | Uncultured Glomus (EU340290) | 100 | |
W. borbonica | C2 | 3 | Acaulospora sp. | KJ639007 | Uncultured Acaulospora (JN559797) | 95 |
H3 | 6 | Rhizophagus sp. | KJ639005 | Uncultured Rhizophagus (HF913502) | 99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calheiros, C.S.C.; Pereira, S.I.A.; Franco, A.R.; Castro, P.M.L. Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment. Water 2019, 11, 1535. https://doi.org/10.3390/w11081535
Calheiros CSC, Pereira SIA, Franco AR, Castro PML. Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment. Water. 2019; 11(8):1535. https://doi.org/10.3390/w11081535
Chicago/Turabian StyleCalheiros, Cristina S. C., Sofia I. A. Pereira, Albina R. Franco, and Paula M. L. Castro. 2019. "Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment" Water 11, no. 8: 1535. https://doi.org/10.3390/w11081535