Riparian Land-Use Impacts on Stream Bank and Gully Erosion in Agricultural Watersheds: What We Have Learned
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studies Reviewed
2.2. Riparian Land-Uses
2.3. Methods
2.3.1. Stream Bank Annual Erosion Rates
2.3.2. Stream Bank Erosion and Deposition Events
2.3.3. Severely Eroding Bank Lengths and Areas
2.3.4. Annual Soil Loss
- SL = soil loss (Mg year−1) by stream bank erosion,
- EA = stream bank eroding area (m2),
- ER = stream bank erosion rate (m year−1), and
- BD = stream bank soil bulk density (Mg m−3).
2.3.5. Stocking Rate, Stream Order, Bank Aspect, Bank Position, and Rainfall and Stream Flow Data
2.3.6. Stream Bank Erosion Processes
2.3.7. Gullies, Cattle Stream Access Points, and Cattle Loafing Areas
2.3.8. Stream Bed Substrate
2.3.9. Stream Water Total Suspended Sediment
2.3.10. Statistical Analysis
3. Results
3.1. Stream Bank Annual Erosion Rates
3.2. Stream Bank Erosion and Deposition Events
3.3. Severely Eroding Stram Bank Lengths and Areas
3.4. Annual Stream Bank Soil Loss
3.5. Precipitation and Stream Flows
3.6. Stream Order, Bank Aspect, and Position
3.7. Stream Erosion and Deposition Processes
3.8. Gullies, Cattle Access Points, and Loafing Areas
3.9. Stream Bed Substrate
3.10. Stream Water Total Suspended Sediments
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing U.S. river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Fisher, K.; Brierley, G. Quantitative assessment of the relationships among ecological, morphological and aesthetic values in a river rehabilitation initiative. J. Environ. Manag. 2015, 153, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salo, J.; Kalliola, R.; Hakkinen, I.; Makinen, Y.; Niemala, P.; Puhakka, M.; Coley, P.D. River dynamics and the diversity of the Amazon lowland forest. Nature 1986, 322, 254–258. [Google Scholar] [CrossRef]
- Lane, S.N.; Tayefi, V.; Reid, S.C.; Yu, D.; Hardy, R.J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf. Process. Landf. 2006, 32, 429–446. [Google Scholar] [CrossRef]
- Stover, S.C.; Montgomery, D.R. Channel change and flooding, Skokomish River, Washington. J. Hydrol. 2001, 243, 272–286. [Google Scholar] [CrossRef]
- Pinter, N.; Heine, R.A. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. J. Hydrol. 2005, 302, 70–91. [Google Scholar] [CrossRef]
- Owens, P.N.; Batalla, R.J.; Collins, A.J.; Gomez, B.; Hicks, D.M.; Horowitz, A.J.; Kondolf, G.M.; Marden, M.; Page, M.J.; Peacock, D.H.; et al. Fine-grained sediment in river systems: Environmental significance and management issues. River Res. Appl. 2005, 21, 693–717. [Google Scholar] [CrossRef]
- Kotak, B.G.; Prepas, E.E.; Hrudey, S.E. Blue green algal toxins in drinking water supplies: Research in Alberta. LakeLine 1994, 14, 37–40. [Google Scholar]
- Martin, A.; Cooke, G.D. Health risks in eutrophic water supplies. LakeLine 1994, 14, 24–26. [Google Scholar]
- Newcombe, C.P.; Jensen, J.O.T. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manag. 1996, 16, 693–727. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; Sims, J.T.; Vance, G.F. Soils and Environmental Quality; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Midgley, T.L.; Fox, G.A.; Derek, M.; Heeren, D.M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012, 145–146, 107–144. [Google Scholar] [CrossRef]
- Matono, P.; Batista, T.; Sampaio, E.; Ilheu, M. Effects of Agricultural Land Use on the Ecohydrology of Small- Medium Mediterranean River Basins: Insights from a Case Study in the South of Portugal. In Land Use. Assessing the Past, Envisioning the Future; Loures, L.C., Ed.; Intenchopen: London, UK, 2018; pp. 30–51. [Google Scholar]
- Botero-Acosta, A.; Chua, M.L.; Guzman, J.A.; Starks, P.J.; Moriasi, D.N. Riparian erosion vulnerability model based on environmental features. J. Environ. Manag. 2017, 203, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.W.; Nater, E.A. Historical sediment flux from three watersheds into Lake Pepin, Minnesota, USA. J. Environ. Qual. 2000, 29, 561–568. [Google Scholar] [CrossRef]
- Sekely, A.C.; Mulla, D.J.; Bauer, D.W. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J. Soil Water Conserv. 2002, 57, 243–250. [Google Scholar]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E.; Kirchoff, C.E. Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ. 2005, 95, 493–501. [Google Scholar] [CrossRef]
- Kessler, A.C.; Gupta, S.C.; Dolliver, H.A.S.; Thoma, D.P. Lidar quantification of bank erosion in Blue Earth County, Minnesota. J. Environ. Qual. 2012, 41, 197–207. [Google Scholar] [CrossRef]
- Lamba, J.; Thompson, A.M.; Karthikeyana, K.G.; Fitzpatrick, F.A. Sources of fine sediment stored in agricultural lowland streams, Midwest, USA. Geomorphology 2015, 236, 44–53. [Google Scholar] [CrossRef]
- Hamlett, J.M.; Baker, J.L.; Johnson, H.P. Channel morphology changes and sediment yield for a small agricultural watershed in Iowa. Trans. ASAE 1983, 26, 1390–1396. [Google Scholar] [CrossRef]
- Odgaard, A.J. Streambank erosion along two rivers in Iowa. Water Resour. Res. 1987, 23, 1225–1236. [Google Scholar] [CrossRef]
- Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J. Impacts of landcover change on suspended sediment transport in two agricultural watersheds. J. Am. Water Resour. Assoc. 2011, 47, 672–686. [Google Scholar] [CrossRef]
- Schilling, K.E.; Wolter, C.F. Applications of GPS and GIS to map channel features in Walnut Creek, Iowa. J. Am. Water Resour. Assoc. 2000, 36, 1423–1434. [Google Scholar] [CrossRef]
- Palmer, J.A.; Schilling, K.E.; Isenhart, T.M.; Schultz, R.C.; Tomer, M.D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 2014, 209, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, F.A.; Knox, J.C.; Schubauer-Berigan, J.P. Channel, floodplain, and wetland responses to floods and overbank sedimentation, 1846–2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin. In Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts; James, L.A., Rathburn, S.L., Whittecar, G.R., Eds.; Geological Society of America: Boulder, CO, USA, 2009; pp. 23–42. [Google Scholar]
- Zaimes, G.N.; Lee, K.-H.; Tufekckioglu, M.; Long, L.A.; Schultz, R.C.; Isenhart, T.M. The effectiveness of riparian conservation practices in reducing sediment in Iowa streams. In Agricultural Research Updates; Hendriks, B., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; Volume 2, pp. 117–166. [Google Scholar]
- Knox, J.C. Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated. Geomorphology 2006, 79, 286–310. [Google Scholar] [CrossRef]
- Simon, A.; Klimetz, L. Relative magnitudes and sources of sediment in benchmark watersheds of the Conservation Effects Assessment Project. J. Soil Water Conserv. 2008, 63, 504–522. [Google Scholar] [CrossRef]
- Wilson, C.G.; Kuhnle, R.A.; Bosch, D.D.; Steiner, J.L.; Starks, P.J.; Tomer, M.D.; Wilson, G.V. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008, 63, 523–532. [Google Scholar] [CrossRef]
- Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; et al. Large shift in source of fine sediment in the upper Mississippi River. Environ. Sci. Technol. 2011, 45, 8804–8810. [Google Scholar] [CrossRef]
- Batalla, R.J.; Gomez, C.M.; Kondolf, G.M. Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J. Hydrol. 2004, 290, 117–136. [Google Scholar] [CrossRef]
- Vanacker, V.; Molina, A.; Govers, G.; Poesen, J.; Dercon, G.; Deckers, S. River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology 2005, 72, 340–353. [Google Scholar] [CrossRef]
- Wellmeyer, J.L.; Slattery, M.C.; Phillips, J.D. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas. Geomorphology 2005, 69, 1–13. [Google Scholar] [CrossRef]
- Burkart, M.R.; Oberle, S.L.; Hewitt, M.J.; Pickus, J. A framework for regional agro-ecosystems characterization using the national resources inventory. J. Environ. Qual. 1994, 23, 866–874. [Google Scholar] [CrossRef]
- Whitney, G.G. From Coastal Wilderness to Fruited Plains: A History of Environmental Change in Temperate North America, 1500 to Present; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Simon, A.; Rinaldi, M.; Hadish, G. Channel Evolution in the Loess Area of the Midwestern United States. In Proceedings of the Sixth Federal Interagency Sedimentation Conference, Las Vegas, NV, USA, 10–14 March 1996; U.S. Government Printing Office: Washington, DC, USA, 1996; pp. III.86–III.93. [Google Scholar]
- Knox, J.C. Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley. Catena 2001, 42, 193–224. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Stream bank erosion adjacent to riparian forest buffers, row-cropped fields, and continuously-grazed pastures along Bear Creek in central Iowa. J. Soil Water Conserv. 2004, 59, 19–27. [Google Scholar]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Riparian land-uses and precipitation influences on stream bank erosion in central Iowa. J. Am. Water Resour. Assoc. 2006, 42, 83–97. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C. Riparian land-use impacts on bank erosion and deposition of an incised stream in north-central Iowa, USA. Catena 2015, 125, 61–73. [Google Scholar] [CrossRef]
- Palmer, J.A. An Assessment of Riparian Land-Use and Channel Condition Impacts on Streambank Eroding Lengths and Recession Rates in Two Third Order Rural Watersheds in Central Iowa. Master’s Thesis, Iowa State University, Ames, IA, USA, 2008. [Google Scholar]
- Tufekcioglu, M. Stream Bank Soil and Phosphorus Losses within Grazed Pasture Stream Reaches in the Rathbun Watershed in Southern Iowa. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2010. [Google Scholar]
- Tufekcioglu, M.; Isenhart, T.M.; Schultz, R.C.; Bear, D.A.; Kovar, J.L.; Russell, J.R. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in Southern Iowa, United States. J. Soil Water Conserv. 2012, 67, 545–555. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C. Stream bed substrate composition adjacent to different riparian land-uses in Iowa, USA. Ecol. Eng. 2011, 11, 1692–1699. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C. Do randomly placed riparian conservation land-uses improve stream water quality in Iowa, USA? Pol. J. Environ. Stud. 2011, 20, 1083–1092. [Google Scholar]
- Zaimes, G.N.; Schultz, R.C. Assessing riparian conservation land management practice impacts on gully erosion in Iowa. Environ. Manag. 2012, 49, 1009–1021. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Streambank soil and phosphorus losses under different riparian land-uses in Iowa. J. Am. Water Resour. Assoc. 2008, 42, 935–947. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Tufekcioglu, M. Gully and stream bank erosion in three pastures with different management in Southeast Iowa. J. Iowa Acad. Sci. 2009, 116, 1–8. [Google Scholar]
- Tufekcioglu, M.; Schultz, R.C.; Isenhart, T.M.; Zaimes, G.N.; Tufekcioglu, A. Riparian grazing impacts on stream bank erosion and phosphorus loss via surface runoff. J. Am. Water Resour. Assoc. 2013, 49, 103–113. [Google Scholar] [CrossRef]
- USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service). Riparian Forest Buffer; Conservation Practice Standard, Code 391; USDA-NRCS: Des Moines, IA, USA, 1997.
- USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service). Grass Filters; Conservation Practice Standard, Code 393; USDA-NRCS: Des Moines, IA, USA, 1997.
- USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service). Profitable Pastures: A Guide to Grass, Grazing and Good Management; USDA-NRCS: Des Moines, IA, USA, 1997.
- Lawler, D.M. The measurement of river bank erosion and lateral channel change: A review. Earth Surf. Process. Landf. 1993, 18, 777–821. [Google Scholar] [CrossRef]
- Kearney, S.P.; Fonte, S.J.; Garcia, E.; Smukler, S.M. Improving the utility of erosion pins: Absolute value of pin height change as an indicator of relative erosion. Catena 2018, 163, 427–432. [Google Scholar] [CrossRef]
- USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service). Erosion and Sediment Delivery; Field Office Technical Guide Notice no. IA-198; USDA-NRCS: Des Moines, IA, USA, 1998.
- Lawler, D.M. A new technique for the automatic monitoring of erosion and deposition rates. Water Resour. Res. 1991, 27, 2125–2128. [Google Scholar] [CrossRef]
- Lawler, D.M. Design and installation of a novel automatic erosion monitoring system. Earth Surf. Process. Landf. 1992, 17, 455–463. [Google Scholar] [CrossRef]
- Lawler, D.M.; Couperthwaite, J.; Bull, L.J.; Harris, N.M. Bank erosion event and process in the Upper Severn Basin. Hydrol. Earth Syst. Sci. 1997, 1, 523–534. [Google Scholar] [CrossRef]
- Couper, P.; Maddock, I.P. Subaerial river bank processes and interaction with other bank erosion mechanisms on the River Arrow, Warwickshire, UK. Earth Surf. Process. Landf. 2001, 26, 631–646. [Google Scholar] [CrossRef]
- Wynn, T.M.; Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 2006, 42, 69–82. [Google Scholar] [CrossRef]
- Soil Science Society of America (SSSA). Glossary of Soil Science Terms. Soil Science Society of America. 2001. Available online: https://www.soils.org/publications/soils-glossary (accessed on 5 November 2010).
- Heitke, J.D. In-stream and Riparian Habitat Relationships in Iowa Streams. Master’s Thesis, Iowa State University, Ames, IA, USA, 2002. [Google Scholar]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 1998. [Google Scholar]
- Simonson, T.D.; Lyons, J.; Kanehl, P.D. Guidelines for Evaluating Fish Habitat in Wisconsin Streams; General Technical Report NC-164; USDA, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1994. [Google Scholar]
- Kronvang, B.; Grant, R.; Laubel, A.L. Sediment and phosphorus export from a lowland catchment: Quantification of sources. Water Air Soil Pollut. 1997, 99, 465–476. [Google Scholar] [CrossRef]
- Simon, A.; Darby, S. The nature and significance of incised river channels. In Incised River Channels: Processes, Forms, Engineering, and Management; Darby, S.E., Simon, A., Eds.; John Wiley and Sons: Chichester, UK, 1999; pp. 1–18. [Google Scholar]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Trimble, S.W.; Mendel, A.C. The cow as a geomorphic agent—A critical review. Geomorphology 1995, 13, 233–253. [Google Scholar] [CrossRef]
- Hadrich, J.C.; Van Winkle, A. Awareness and pro-active adoption of surface water BMPs. J. Environ. Manag. 2013, 127, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Schultz, R.C.; Isenhart, T.M.; Simpkins, W.W.; Colletti, J.P. Riparian Forest Buffers in Agroecosystems—Lessons Learned from the Bear Creek Watershed, Central Iowa, USA. Agrofor. Syst. 2004, 61, 35–50. [Google Scholar]
- Simon, A.; Pollen-Bankhead, N.; Thomas, R.E. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophys. Monogr. Ser. 2011, 194, 453–474. [Google Scholar]
- Arthun, D.; Zaimes, G.N.; Martin, J. Temporal river channel changes in the Gila Box Riparian National Conservation Area, Arizona, USA. Phys. Geogr. 2013, 34, 60–73. [Google Scholar] [CrossRef]
- Gurnell, A. Plants as river system engineers. Earth Surf. Process. Landf. 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Purvis, R.A.; Fox, G.A. Streambank sediment loading rates at the watershed scale and the benefit of riparian protection. Earth Surf. Process. Landf. 2016, 41, 1327–1336. [Google Scholar] [CrossRef]
- Diebel, M.W.; Maxted, J.T.; Robertson, D.M.; Han, S.; Vander Zanden, M.J. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential. Environ. Manag. 2001, 43, 69–83. [Google Scholar] [CrossRef]
- Díaz-Pascacio, E.; Ortega-Argueta, A.; Castillo-Uzcanga, Μ.Μ.; Ramírez-Marcial, Ν. Influence of land use on the riparian zone condition along an urban-rural gradient on the Sabinal River, Mexico. Bot. Sci. 2018, 96, 180–199. [Google Scholar] [CrossRef]
- Harmel, R.D.; Haan, C.T.; Duntnell, R.C. Bank erosion and riparian vegetation influences; Upper Illinois River, Oklahoma. Trans. ASAE 1999, 42, 1321–1329. [Google Scholar] [CrossRef]
- Lyons, J.; Weasel, B.M.; Paine, L.K.; Undersander, D.J. Influence of intensive rotational grazing on bank erosion, fish habitat quality, and fish communities in Southwestern Wisconsin trout streams. J. Soil Water Conserv. 2000, 55, 271–276. [Google Scholar]
- Malkinson, D.; Wittenberg, L. Scaling the effects of riparian vegetation on cross-sectional characteristics of ephemeral mountain streams—A case study of Nahal Oren, Mt. Carmel, Israel. Catena 2007, 69, 103–110. [Google Scholar] [CrossRef]
- Hagerty, D.J.; Spoor, M.F.; Ullrich, C.R. Bank failure and erosion on the Ohio River. Eng. Geol. 1981, 17, 141–158. [Google Scholar] [CrossRef]
- Wynn, T.M.; Henderson, M.B.; Vaughan, D.H. Changes in streambank erodibility and critical shear stress due to subaerial processes along a headwater stream, southwestern Virginia, USA. Geomorphology 2008, 97, 260–273. [Google Scholar] [CrossRef]
- Simon, A.; Rinaldi, M. Channel instability in the loess area of the midwestern United States. J. Am. Water Resour. Assoc. 2000, 36, 133–150. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Thorne, C.R.; Clifford, N.J. Identifying causes and controls of river bank erosion in a British upland catchment. Catena 2012, 100, 107–119. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Foy, R.H.; Withers, P.J.A. Practical and innovative measures for the control of agricultural phosphorus losses to water: An overview. J. Environ. Qual. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- Gomez, B.; Banbury, K.; Marden, M.; Trustrum, N.A.; Peacock, D.H.; Hoskin, P.J. Gully erosion and sediment production: Te Weraroa Stream, New Zealand. Water Resour. Res. 2003, 39, 1187. [Google Scholar] [CrossRef]
- Dabney, S.M.; Shields, F.D., Jr.; Temple, D.M.; Langendoen, E.J. Erosion processes in gullies modified by establishing grass hedges. Trans. ASAE 2004, 47, 1561–1571. [Google Scholar] [CrossRef]
- Ayele, G.K.; Addisie, M.B.; Langendoen, E.J.; Tegegne, N.H.; Tilahun, S.A.; Moges, M.A.; Nicholson, C.F.; Steenhuis, T.S. Evaluating erosion control practices in an actively gullying watershed in the highlands of Ethiopia. Earth Surf. Process. Landf. 2018, 43, 2835–2843. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Daniel, T.; Sims, J.T.; Lemunyon, J.; Stevens, R.; Parry, R. Agricultural Phosphorus and Eutrophication, 2nd ed.; USDA-ARS: Washington, DC, USA, 2003.
- McDowell, R.W.; Srinivasan, M.S. Identifying critical source areas to water quality: 2. Validating the approach for phosphorus and sediment losses in grazed headwater catchments. J. Hydrol. 2009, 379, 68–80. [Google Scholar] [CrossRef]
- Wohl, N.E.; Carline, R.F. Relations among riparian grazing, sediment loads, macroinvertebrates, and fishes in three central Pennsylvania streams. Can. J. Fish. Aquat. Sci. 1996, 53, 260–266. [Google Scholar] [CrossRef]
- Li, J.-F.; Tfwala, S.S.; Chen, S.-C. Effects of Vegetation Density and Arrangement on Sediment Budget in a Sediment-Laden Flow. Water 2018, 10, 1412. [Google Scholar] [CrossRef]
- Wilton, T.F. Biological Assessment of Iowa’s Wadeable Streams; Iowa DNR: Des Moines, IA, USA, 2004.
- Heitke, J.D.; Pierce, C.L.; Gelwicks, G.T.; Simmons, G.A.; Siegwarth, G.L. Habitat land use, and fish assemblage relationships in Iowa streams: Preliminary assessment in an agricultural landscape. In Influences of Landscape on Stream Habitat and Biological Communities; Wang, L., Hughes, R., Seelbach, P.W., Eds.; American Fisheries Society: Bethesda, MD, USA, 2006; pp. 287–303. [Google Scholar]
- Banner, E.B.K.; Stahl, A.J.; Dodds, W.K. Stream discharge and riparian land use influence in-stream concentrations and loads of phosphorus from Central Plains watersheds. Environ. Manag. 2009, 44, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Njue, N.; Koech, E.; Hitimana, J.; Sirmah, P. Influence of land use activities on riparian vegetation, soil and water quality: An indicator of biodiversity loss, South West Mau Forest, Kenya. Open J. For. 2016, 6, 373–385. [Google Scholar] [CrossRef]
- Lawler, D.M. Defining the moment of erosion: The principle of thermal consonance timing. Earth Surf. Process. Landf. 2005, 30, 1597–1615. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Iakovoglou, V.; Koutalakis, P.; Ioannou, K.; Kosmadakis, I.; Tsardaklis, P.; Laopoulos, P. The automated soil erosion monitoring system (ASEMS). Int. J. Geol. Environ. Eng. 2015, 9, 1249–1252. [Google Scholar]
Case Study Number, Name, and Reference | Iowa Region (Landform) | Number and Order of Stream Reaches (Strahler System [39]) | Riparian Land-Uses * | Data Years | Stream Bank Variables (Units) | Other Variables (Units) |
---|---|---|---|---|---|---|
1. Bear Creek-Pins [40,41] | Central (Des Moines Lobe) | Single 2nd order stream reach | RF CP RC | 1999 2000 2001 2002 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%), Severely Eroding Areas (m2 km−1) Soil Bulk Density (g cm−3) (1999 & 2002) Soil Loss (Mg km−1 year−1) | Precipitation Data (mm year−1) |
2. Bear Creek-PEEPs [42] | Central (Des Moines Lobe) | Single 2nd order stream reach | RF GF CP | 2002–2003 2003 2002–2003 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%), Severely Eroding Areas (m2 km−1) Soil Loss (Mg km−1 year−1) Erosion & Deposition events (#) Major Erosion & Deposition events (#) | Precipitation Data (mm year−1) Stream Flow Data (m3 s−1 year−1) Soil Bulk Density (g cm−3) (only 2002) |
3. Walnut Creek [25,43] | Southeast (Southern Iowa Drift Plain) | Single 3rd order stream reach | RF GF CP | 2005 2006 2007–2008 2009 2010 2011 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%) (2004 & 2010) Soil Loss (Mg km−1 year−1) (only for the entire reach) | Precipitation Data (mm year−1) Stream Flow Data (m3 s−1year−1) Soil Bulk Density (g cm−3) (only 2005) Stream TSS Load (tons year−1) (only for the entire reach) |
4. Squaw Creek [43] | Southeast (Southern Iowa Drift) | Single 3rd order stream reach | RF RC | 2004 | Severely Eroding Lengths (%) | |
5. Rathbun Lake Watershed [44,45] | Southeast (Southern Iowa Drift Plain) | Multiple (thirteen 1st–3rd order) reaches in a watershed | GF CP | 2006 2007 2008 2009 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%) (only 2006) Severely Eroding Areas (m2 km−1), (only 2006) Soil Loss (Mgs km−1 year−1) Soil Bulk Density (g cm−3) | Precipitation Data (mm year−1) Stream Stage Data (cm) Riparian Area Soil Bulk Density (g cm−3) Stream Order, Bed Slope (%) Sinuosity Stocking Rates (Lu d m−1) |
6. NE Region [46,47,48] | Northeast (Paleozoic Plateau and Iowan Surface) | Multiple (ten 1st–3rd order) reaches in a region | RF FP IP CP | 2002 2003 2004 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%) (only 2004) Severely Eroding Areas (m2 km−1) (only 2004) Soil Bulk Density (g cm−3) (only 2004) Soil Loss (Mg km−1 year−1) | Precipitation Data (mm year−1) Riparian Soil Bulk Density (g cm−3) (only 2004) Number of gullies (# km−1) (only 2004) Cattle access points (# km−1) (only 2004) Length of all gullies (m km−1) (only 2004) Bed Substrate (%) (only 2004) Stream Water TSS (mg L−1) |
7. CE Region [46,47,48,49] | Central (Des Moines Lobe) | Multiple (ten 1st–3rd order) reaches in a region | RF GF RP CP RC | 2002 2003 2004 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%) (only 2004) Severely Eroding Areas (m2 km−1) (only 2004) Soil Bulk Density (g cm−3) (only 2004) Soil Loss (Mg km−1 year−1) | Precipitation Data (mm year−1) Riparian Soil Bulk Density (g cm−3) (only 2004) Number of gullies (# km−1) (only 2004) Cattle access points (# km−1) (only 2004) Length of all gullies (m km−1) (only 2004) Bed Substrate (%) (only 2004) Stream Water TSS (mg L−1) |
8. SE Region [46,47,48,49] | Southeast (Southern Iowa Drift Plain) | Multiple (ten 1st–3rd order) reaches in a region | GF FP IP RP CP | 2002 2003 2004 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%) (only 2004) Severely Eroding Areas (m2 km−1) (only 2004) Soil Bulk Density (g cm−3) (only 2004) Soil Loss (Mg km−1 year−1) | Precipitation Data (mm year−1) Riparian Soil Bulk Density (g cm−3) (only 2004) Number of gullies (# km−1) (only 2004) Cattle access points (# km−1) (only 2004) Length of all gullies (m km−1) (only 2004) Bed Substrate (%) (only 2004) Stream Water TSS (mg L−1) |
9. SE Region-Gully [50] | Southeast (Southern Iowa Drift Plain landform) | Multiple (three 2nd–3rd) reaches in a region | IP RP CP | 2004 | Erosion or Deposition Rates (mm), Severely Eroding Lengths (%) (only 2004) Severely Eroding Areas (m2 km−1) (only 2004) Soil Bulk Density (g cm−3) (only 2004) Soil Loss (Mg km−1 year−1) | Precipitation Data (mm year−1)Riparian Soil Bulk Density (g cm−3) (only 2004) Gully Erosion Rates (mm) Gully Severely Eroding Lengths (%) (only 2004) Gully Severely Eroding Areas (m2 km−1) (only 2004) Gully Soil Loss (tons km−1 year−1) |
10. Rainfall Simulator [51] | Northeast Central Southeast | Multiple (nine 1st–3rd order) reaches in a region | IP RP CP | 2005 | Stocking Rates (cow-day ha−1 m−1 year−1) Loafing areas (%) Cattle Access Areas (%) Surface runoff (l/0.5 m2) Surface runoff TSS concentration (g L−1) Surface runoff soil loss (kg/km, kg/ha) |
Case Study (Reference) | Erosion Type | Year | Riparian Forest Buffer (RF) | Grass Filter (GF) | Fenced Pasture (FP) | Intensive Rot. Pasture (IP) | Rotational Pasture (RP) | Continuous Pasture (CP) | Row-Crop Field (RC) |
---|---|---|---|---|---|---|---|---|---|
mm year−1 | |||||||||
1 [40,41] | Stream bank | 1999 | 129 (b) | - | - | - | - | 304 (b) | 351 (a) |
2000 | 4 (b) | - | - | - | - | 29 (ab) | 119 (a) | ||
2001 | 45 (a) | - | - | - | - | 165 (a) | 143 (a) | ||
2002 | 37 (a) | - | - | - | - | 103 (a) | 50 (a) | ||
1998–2002 * | 50 (b) | - | - | - | - | 149 (a) | 161 (a) | ||
2 [42] | Stream bank | 2003 | 30 (a) | - | - | - | - | 403 (a) | - |
2004 | 80 (ab) | −4 (b) | - | - | - | 130 (a) | - | ||
2002–2004 * | 55 (a) | - | - | - | - | 266 (a) | - | ||
3 [25,43] | Stream bank | 2005 | 3 (a) | 11 (a) | - | - | - | −3 (a) | - |
2006 | 11 (a) | 22 (a) | - | - | - | −11 (a) | - | ||
2007–2008 * | 236 (a) | 209 (b) | - | - | - | 139 (b) | - | ||
2009 | 401 (a) | 277 (b) | - | - | - | 305 (ab) | - | ||
2010 | 272 (a) | 192 (a) | - | - | - | 238 (a) | - | ||
2011 | 140 (a) | 42 (a) | - | - | - | 164 (a) | - | ||
2005–2011 * | 172 (a) | 124 (b) | - | - | - | 139 (ab) | - | ||
5 [44,45] | Stream bank | 2007 | - | 89 (a) | - | - | - | 152 (b) | - |
2008 | - | 146 (b) | - | - | - | 261 (a) | - | ||
2009 | - | 130 (a) | - | - | - | 294 (b) | - | ||
2007–2009 * | - | 121 (b) | - | - | - | 236 (a) | - | ||
6 [49] | Stream bank | 2002 | −10 (ab) | - | −25 (b) | 114 (ab) | - | 151 (a) | - |
2003 | 36 (b) | - | 54 (ab) | 98 (ab) | - | 184 (a) | - | ||
2004 | 1 (c) | - | 24 (c) | 313 (a) | - | 137 (b) | - | ||
2002–2004 * | 15 (b) | - | 22 (b) | 170 (a) | - | 171 (a) | - | ||
7 [49] | Stream bank | 2002 | 54 (a) | 87 (a) | - | - | 70 (a) | 79 (a) | 225 (a) |
2003 | 4 (b) | 66 (b) | - | - | 54 (b) | 128 (ab) | 223 (a) | ||
2004 | 83 (c) | 168 (c) | - | - | 198 (bc) | 298 (a) | 271 (ab) | ||
2002–2004 * | 46 (c) | 106 (bc) | - | - | 104 (bc) | 166 (ab) | 239 (a) | ||
8 [49] | Stream bank | 2002 | - | 37 (a) | 42 (a) | 59 (a) | 166 (a) | 127 (a) | - |
2003 | - | 12 (a) | −6 (a) | 55 (a) | 16 (a) | 23 (a) | - | ||
2004 | - | 109 (a) | 65 (a) | 169 (a) | 199 (a) | 182 (a) | - | ||
2002–2004 | - | 41 (a) | 58 (a) | 94 (a) | 122 (a) | 101 (a) | - | ||
9 [50] | Gully | 2004 | - | - | - | 121 (b) | 135 (ab) | 245 (a) | - |
Stream bank | 2004 | - | - | - | −143 (a) | 78 (a) | 157 (a) | - |
Case Study (Reference) | Erosion Type | Year | Riparian Forest Buffer (RF) | Grass Filter (GF) | Fenced Pasture (FP) | Intensive Rot. Pasture (IP) | Rotational Pasture (RP) | Continuous Pasture (CP) | Row-Crop Field (RC) |
---|---|---|---|---|---|---|---|---|---|
%/m2 km−1 | |||||||||
1 [40,41] | Stream bank | 1998 | 27 (a)/372 | - | - | - | - | 42 (b)/592 | 44 (b)/639 |
2002 | 14 (a)/149 | - | - | - | - | 41 (b)/578 | 39 (b)/511 | ||
2 [42] | Stream bank | 2002 | 12 (a)/120 | 35 (b)/460 | - | - | - | 54 (c)/810 | - |
3 [25,43] | Stream bank | 2004 | 27 (a) | 7 (b) | - | - | - | 26 (ab) | 19 (ab) |
4 [43] | Stream bank | 2004 | 7 (b) | - | - | - | - | - | 13 (a) |
5 [44,45] | Stream bank | 2006 | - | 18 (a)/471 | - | - | - | 24 (a)/786 | - |
6 [48,49] | Stream bank | 2004 | 10 (b)/305 | - | 11 (b)/254 | 27 (a)/750 | - | 38 (a)/1209 | - |
Gully | 2004 | 0 (a)/0 | - | 0 (a)/0 | 67 (a)/2 | - | 10 (a)/38 | - | |
7 [48,49] | Stream bank | 2004 | 14 (bc)/307 | 16 (bc)/384 | - | - | 25 (b)/692 | 39 (ab)/1176 | 44 (a)/1036 |
Gully | 2004 | 76 (a)/14 | 43 (a)/14 | - | - | 51 (a)/51 | 44 (a) 56 | 74 (a)/130 | |
8 [48,49] | Stream bank | 2004 | - | 16 (c)/413 | 16 (bc)/797 | 32 (b)/530 | 54 (a)/1602 | 54 (a)/1478 | - |
Gully | 2004 | - | 1 (b)/7 | 54 (a)/93 | 33 (ab)/125 | 34 (ab)/286 | 49 (a)/147 | - | |
9 [50] | Gully | 2004 | - | - | - | 27 (c)/179 | 40 (b)/364 | 47 (a)/304 | - |
Stream bank | 2004 | - | - | - | 65 (a)/748 | 43 (b)/1080 | 45 (b)/1550 | - |
Case Study (Reference) | Erosion | Year | Riparian Forest Buffer (RF) | Grass Filter (GF) | Fenced Pasture (FP) | Intensive Rot. Pasture (IP) | Rotational Pasture (RP) | Continuous Pasture (CP) | Row-Crop Field (RC) |
---|---|---|---|---|---|---|---|---|---|
1 [40,41] | Stream bank | 1999 | 52 | - | - | - | - | 281 | 266 |
2000 | 8 | - | - | - | - | 100 | 29 | ||
2001 | 2 | - | - | - | - | 76 | 164 | ||
2002 | 6 | - | - | - | - | 27 | 98 | ||
1998–2002 | 19 | - | - | - | - | 121 | 139 | ||
2 [42] | Stream bank | 2003 | 4 | - | - | - | - | 437 | - |
2004 | 12 | −2 | - | - | - | 141 | - | ||
2002–2004 | 8 | - | - | - | - | 289 | - | ||
5 [44,45] | Stream bank | 2007 | - | 51 | - | - | - | 191 | - |
2008 | - | 86 | - | - | - | 310 | - | ||
2009 | - | 77 | - | - | - | 348 | - | ||
2007–2009 | - | 71 | - | - | - | 283 | - | ||
6 [49] | Stream bank | 2002 | −3 | - | −7 | 103 | - | 210 | - |
2003 | 12 | - | 16 | 88 | - | 256 | - | ||
2004 | 0 | - | 7 | 282 | - | 191 | - | ||
2002–2004 | 5 | - | 6 | 153 | - | 238 | - | ||
7 [49] | Stream bank | 2002 | 21 | 39 | - | - | 63 | 125 | 287 |
2003 | 2 | 29 | - | - | 49 | 203 | 284 | ||
2004 | 32 | 75 | - | - | 179 | 473 | 345 | ||
2002–2004 | 18 | 47 | - | - | 94 | 264 | 304 | ||
8 [49] | Stream bank | 2002 | - | 20 | 44 | 40 | 362 | 248 | - |
2003 | - | 6 | −6 | 37 | 35 | 45 | - | ||
2004 | - | 58 | 68 | 115 | 434 | 355 | - | ||
2002–2004 | - | 22 | 61 | 64 | 266 | 197 | - | ||
9 [50] | Gully | 2004 | - | - | - | 28 | 89 | 207 | - |
Stream bank | 2004 | - | - | - | 170 | 282 | 323 | - |
Case Study (Reference) | Gully and Cattle Access Variable | Riparian Forest Buffer (RF) | Grass Filter (GF) | Fenced Pasture (FP) | Intensive Rot. Pasture (IP) | Rotational Pasture (RP) | Continuous Pasture (CP) | Row-Crop Field (RC) |
---|---|---|---|---|---|---|---|---|
6 [48] | Gullies per unit stream length (# km−1) | 1.5 (b) | - | 1.5 (a) | 3.0 (a) | - | 1.3 (a) | - |
Cattle access points per unit stream length (# km−1) | NA (-) * | - | NA (-) | 75 (b) | - | 149 (a) | - | |
Severely eroding gully bank areas per unit stream length (m2 km−1) | 0 (a) | - | 0 (a) | 38 (a) | - | 2 (a) | - | |
7 [48] | Gullies per unit stream length (# km−1) | 1.5 (b) | 3.0 (ab) | - | - | 3.5 (ab) | 3.5 (ab) | 7 (a) |
Cattle access points per unit stream length (# km−1) | NA (-) | NA (-) | - | - | 66 (a) | 84 (a) | NA (-) | |
Severely eroding gully bank areas per unit stream length (m2 km−1) | 14 (a) | 14 (a) | - | - | 51 (a) | 56 (a) | 130 (a) | |
8 [48] | Gullies per unit stream length (# km−1) | - | 5.0 (a) | 3.0 (a) | 8.0 (a) | 6.5 (a) | 4.3 (a) | - |
Cattle access points per unit stream length (# km−1) | - | NA (-) | NA (-) | 101 (a) | 54 (a) | 139 (a) | - | |
Severely eroding gully bank areas per unit stream length (m2 km−1) | - | 7 (b) | 93 (ab) | 125 (ab) | 286 (a) | 147 (ab) | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian Land-Use Impacts on Stream Bank and Gully Erosion in Agricultural Watersheds: What We Have Learned. Water 2019, 11, 1343. https://doi.org/10.3390/w11071343
Zaimes GN, Tufekcioglu M, Schultz RC. Riparian Land-Use Impacts on Stream Bank and Gully Erosion in Agricultural Watersheds: What We Have Learned. Water. 2019; 11(7):1343. https://doi.org/10.3390/w11071343
Chicago/Turabian StyleZaimes, George N., Mustafa Tufekcioglu, and Richard C. Schultz. 2019. "Riparian Land-Use Impacts on Stream Bank and Gully Erosion in Agricultural Watersheds: What We Have Learned" Water 11, no. 7: 1343. https://doi.org/10.3390/w11071343