# Tsunami Intrusion and River Ice Movement

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model Formulation

#### 2.1. Hydrodynamics Equations

#### 2.2. Numerical Method

#### 2.3. Ice Dynamic Model

## 3. Model Validations

#### 3.1. Case I: Oscillation in a Parabolic Container

#### 3.2. Case II: Conservation of Solitary Wave Propagation

#### 3.3. Case III: Tsunami Wave in a Laboratory Flume

## 4. Model Applications

#### 4.1. Ice Effect on Tsunami Wave Propagations over a Beach

#### 4.2. Ice Deposition on the Beach

#### 4.3. Ice jamming in River Channel with Incoming Tsunami Wave

^{3}/s with surface ice thickness of 0.4 m and concentration of 0.6. The velocities at upstream cross-section nodes are calculated based on the inflow discharge and simulated water depth. The downstream boundary condition is a solitary wave with 4 m height and a 900 s period. No special treatment is used for the reflective boundary as the wave dies out before it reflects back. The initial flow condition and longitudinal ice profiles are shown in Figure 8. The total simulation time is 3600 s.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Peregrine, D. Long waves on a beach. J. Fluid Mech.
**1967**, 27, 815–827. [Google Scholar] [CrossRef] - Madsen, P.A.; Murray, R.; Sørensen, O.R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast. Eng.
**1991**, 15, 371–388. [Google Scholar] [CrossRef] - Nwogu, O. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterwy. Port Coast. Ocean. Eng.
**1993**, 119, 618–638. [Google Scholar] [CrossRef] - Wei, G.; Kirby, J.T. Time-dependent numerical code for extended Boussinesq equations. J. Waterway. Port Coast. Ocean. Eng.
**1995**, 121, 251–261. [Google Scholar] [CrossRef] - Madsen, P.A.; Schäffer, H.A. Higher–order Boussinesq–type equations for surface gravity waves: Derivation and analysis. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
**1998**, 356, 3123–3181. [Google Scholar] [CrossRef] - Agnon, Y.; Madsen, P.A.; Schäffer, H. A new approach to high-order Boussinesq models. J. Fluid Mech.
**1999**, 399, 319–333. [Google Scholar] [CrossRef] - Zou, Z.L. Higher order Boussinesq equations. Ocean. Eng.
**1999**, 26, 767–792. [Google Scholar] [CrossRef] - Gobbi, M.F.; Kirby, J.T.; Wei, G.E. A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. J. Fluid Mech.
**2000**, 405, 181–210. [Google Scholar] [CrossRef] - Madsen, P.A.; Fuhrman, D.R. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water. In Advances in Numerical Simulation of Nonlinear Water Waves; World Scientific: Singapore, 2010; Volume 11, pp. 245–285. [Google Scholar]
- Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean. Model.
**2012**, 43, 36–51. [Google Scholar] [CrossRef] - Debsarma, S.; Das, K.P.; Kirby, J.T. Fully nonlinear higher-order model equations for long internal waves in a two-fluid system. J. Fluid Mech.
**2010**, 654, 281–303. [Google Scholar] [CrossRef] [Green Version] - Fang, K.; Zou, Z.; Dong, P.; Liu, Z.; Gui, Q.; Yin, J. An efficient shock capturing algorithm to the extended Boussinesq wave equations. Appl. Ocean. Res.
**2013**, 43, 11–20. [Google Scholar] [CrossRef] - Yao, Y.; Huang, Z.; Monismith, S.G.; Lo, E.Y.M. 1DH Boussinesq modeling of wave transformation over fringing reefs. Ocean. Eng.
**2012**, 47, 30–42. [Google Scholar] [CrossRef] - Gaeta, M.; Bonaldo, D.; Samaras, A.; Carniel, S.; Archetti, R. Coupled wave-2D hydrodynamics modeling at the Reno River Mouth (Italy) under climate change scenarios. Water
**2018**, 10, 1380. [Google Scholar] [CrossRef] - Petti, M.; Bosa, S.; Pascolo, S. Lagoon sediment dynamics: A coupled model to study a medium-term silting of tidal channels. Water
**2018**, 10, 569. [Google Scholar] [CrossRef] - Li, Y.; Song, Z.; Peng, G.; Fang, X.; Li, R.; Chen, P.; Hong, H. Modeling hydro-dynamics in a Harbor Area in the Daishan Island, China. Water
**2019**, 11, 192. [Google Scholar] [CrossRef] - Brunt, K.M.; Okal, E.A.; MacAyeal, D.R. Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. J. Glaciol.
**2011**, 57, 785–788. [Google Scholar] [CrossRef] [Green Version] - Kaistrenko, V.; Razjigaeva, N.; Kharlamov, A.; Shishkin, A. Manifestation of the 2011 Great Tohoku Tsunami on the coast of the Kuril Islands: A tsunami with Ice. Pure Appl. Geophys.
**2013**, 170, 1103–1114. [Google Scholar] [CrossRef] - Shen, H.T.; Wang, D.S.; Lal, A.W. Numerical simulation of river ice processes. J. Cold Reg. Eng.
**1995**, 9, 107–118. [Google Scholar] [CrossRef] - Shen, H.T.; Su, J.; Liu, L. SPH simulation of river ice dynamics. J. Comput. Phys.
**2000**, 165, 752–770. [Google Scholar] [CrossRef] - Knack, I.M.; Shen, H.T. A numerical model study on Saint John River ice breakup. Can. J. Civ. Eng.
**2016**, 45, 817–826. [Google Scholar] [CrossRef] - Shen, H.T.; Liu, L. Shokotsu River ice jam formation. Cold Reg. Sci. Technol.
**2003**, 37, 35–49. [Google Scholar] [CrossRef] - Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng.
**2015**, 42, 696–703. [Google Scholar] [CrossRef] - Madsen, P.A.; Sørensen, O.R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coast. Eng.
**1992**, 18, 183–204. [Google Scholar] [CrossRef] - Tonelli, M.; Petti, M. Shock-capturing Boussinesq model for irregular wave propagation. Coast. Eng.
**2012**, 61, 8–19. [Google Scholar] [CrossRef] - Liang, Q.; Borthwick, A.G.L. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput. Fluids
**2009**, 38, 221–234. [Google Scholar] [CrossRef] - Tonelli, M.; Petti, M. Numerical simulation of wave overtopping at coastal dikes and low-crested structures by means of a shock-capturing Boussinesq model. Coast. Eng.
**2013**, 79, 75–88. [Google Scholar] [CrossRef] - Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 16, p. 724. [Google Scholar]
- Erduran, K.; Ilic, S.; Kutija, V. Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. Int. J. Numer. Methods Fluids
**2005**, 49, 1213–1232. [Google Scholar] [CrossRef] - Shen, H.T. Mathematical modeling of river ice processes. Cold Reg. Sci. Technol.
**2010**, 62, 3–13. [Google Scholar] [CrossRef] - Ji, S.-Y.; Shen, H.T.; Wang, Z.-L.; Shen, H.H.; Yue, Q. A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics. Acta Oceanol. Sin. Engl. Ed.
**2005**, 24, 54. [Google Scholar] - Orszaghova, J.; Borthwick, A.G.; Taylor, P.H. From the paddle to the beach—A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen’s equations. J. Comput. Phys.
**2012**, 231, 328–344. [Google Scholar] [CrossRef] - Yasuda, H. One-dimensional study on propagation of tsunami wave in river channels. J. Hydraul. Eng.
**2010**, 136, 93–105. [Google Scholar] [CrossRef]

**Figure 2.**Simulated water surface elevations over a parabolic topography at time = 0 s, 2000 s, 4000 s, and 6000 s.

**Figure 4.**Comparison between measured and simulated waveforms with different Manning roughness at x = (

**a**) 10 m, (

**b**) 14 m, (

**c**) 18 m, and (

**d**) 22 m.

**Figure 5.**Effect of ice concentrations on the surge run-up in the beach at times: 0 s, 8640 s, and 17,280 s.

**Figure 6.**Simulated ice depositions on the beach under a tsunami wave with different ice-bed friction coefficients: (

**a**) Initial water surface, ice bottom and top elevations, and the tsunami wave boundary conditions; simulated water surface and ice depositions on the beach with the ice-bed friction coefficient of (

**b**) 1.04, (

**c**) 2.08, and (

**d**) 5.20. The red line in the subfigure is the upstream water level boundary.

**Figure 9.**Scenarios of ice jam profiles produced by intrusion of tsunami wave. The colored contour plots indicate ice thickness distribution with two-dimensional velocity vectors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pan, J.; Shen, H.T.
Tsunami Intrusion and River Ice Movement. *Water* **2019**, *11*, 1290.
https://doi.org/10.3390/w11061290

**AMA Style**

Pan J, Shen HT.
Tsunami Intrusion and River Ice Movement. *Water*. 2019; 11(6):1290.
https://doi.org/10.3390/w11061290

**Chicago/Turabian Style**

Pan, Jiajia, and Hung Tao Shen.
2019. "Tsunami Intrusion and River Ice Movement" *Water* 11, no. 6: 1290.
https://doi.org/10.3390/w11061290