Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins
Abstract
:1. Introduction
2. Case Studies
3. Methodology
3.1. Hydrological Model
3.2. Snowmelt Model
4. Spatio-Temporal Variability of the Degree-Day Factor
5. Calibration and Validation of Models
6. Results and Discussion
6.1. Rainfall-Runoff Modeling
6.2. Modeling Snow Accumulation and Snowmelt
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riboust, P.; Thirel, G.; Moine, N.L.; Ribstein, P. Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses. J. Hydrol. Hydromech. 2019, 67, 70–81. [Google Scholar] [CrossRef]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Bernsteinová, J.; Bässler, C.; Zimmermann, L.; Langhammer, J.; Beudert, B. Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. J. Hydrol. Hydromech. 2015, 63, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Lázaro, J.; Castillo-Mateo, J.; Sánchez-Navarro, J.I.; Fuertes-Rodríguez, V.; García-Gil, A.; Edo-Romero, V. Assessment of the Role of Snowmelt in a Flood Event in a Gauged Catchment. Water 2019, 11, 506. [Google Scholar] [CrossRef]
- Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A. Climate change impacts on the seasonality and generation processes of floods & ndash; projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol. Earth Syst. Sci. 2015, 19, 913–931. [Google Scholar] [CrossRef]
- Kling, H.; Fürst, J.; Nachtnebel, H.P. Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrol. Process. 2006, 20, 2141–2156. [Google Scholar] [CrossRef]
- Verdhen, A.; Chahar, B.R.; Sharma, O.P. Springtime Snowmelt and Streamflow Predictions in the Himalayan Mountains. J. Hydrol. Eng. 2014, 19, 1452–1461. [Google Scholar] [CrossRef]
- Dudley, R.; Hodgkins, G.; McHale, M.; Kolian, M.; Renard, B. Trends in snowmelt-related streamflow timing in the conterminous United States. J. Hydrol. 2017, 547, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Penna, D.; van Meerveld, H.; Zuecco, G.; Fontana, G.D.; Borga, M. Hydrological response of an Alpine catchment to rainfall and snowmelt events. J. Hydrol. 2016, 537, 382–397. [Google Scholar] [CrossRef]
- Vormoor, K.; Lawrence, D.; Schlichting, L.; Wilson, D.; Wong, W.K. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol. 2016, 538, 33–48. [Google Scholar] [CrossRef]
- Yilmaz, A.G.; Imteaz, M.A.; Ogwuda, O. Accuracy of HEC-HMS and LBRM Models in Simulating Snow Runoffs in Upper Euphrates Basin. J. Hydrol. Eng. 2012, 17, 342–347. [Google Scholar] [CrossRef]
- Costa, D.; Pomeroy, J.; Wheater, H. A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model. Adv. Water Resour. 2018, 122, 37–48. [Google Scholar] [CrossRef]
- Meng, X.; Ji, X.; Liu, Z.; Xiao, J.; Chen, X.; Wang, F. Research on improvement and application of snowmelt module in SWAT. J. Nat. Resour. 2014, 29, 528–539. [Google Scholar]
- Fuka, D.R.; Easton, Z.M.; Brooks, E.S.; Boll, J.; Steenhuis, T.S.; Walter, M.T. A Simple Process-Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1151–1161. [Google Scholar] [CrossRef]
- Schilling, O.S.; Park, Y.J.; Therrien, R.; Nagare, R.M. Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze–Thaw. Groundwater 2019, 57, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Semádeni-Davies, A.F. Representation of Snow in Urban Drainage Models. J. Hydrol. Eng. 2000, 5, 363–370. [Google Scholar] [CrossRef]
- Zaknic-Catovic, A.; Howard, K.W.; Catovic, Z. Modification of the degree-day formula for diurnal meltwater generation and refreezing. Theor. Appl. Climatol. 2017, 131, 1157–1171. [Google Scholar] [CrossRef]
- Hock, R. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol. 1999, 45, 101–111. [Google Scholar] [CrossRef]
- Kustas, W.P.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Braithwaite, R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol. 1995, 41, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Cazorzi, F.; Fontana, G.D. Snowmelt modelling by combining air temperature and a distributed radiation index. J. Hydrol. 1996, 181, 169–187. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240. [Google Scholar] [CrossRef]
- Buendia, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Sci. Total Environ. 2016, 540, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Rogelis, M.; Werner, M.; Obregón, N.; Wright, N. Hydrological model assessment for flood early warning in a tropical high mountain basin. Hydrol. Earth Syst. Sci. Discuss. 2016. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Stoffel, M.; Bussi, G.; Francés, F.; Bréthaut, C. Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: Model results and implications. Reg. Environ. Chang. 2015, 15, 505–515. [Google Scholar] [CrossRef]
- Orozco, I.; Ramírez, A.I.; Francés, F. Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. Ing. Agua 2018, 22, 125–139. [Google Scholar] [CrossRef]
- McGrane, S.J.; Hutchins, M.G.; Miller, J.D.; Bussi, G.; Kjeldsen, T.R.; Loewenthal, M. During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. J. Hydrol. 2017, 545, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fang, H. Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China. Geomorphology 2017, 293, 255–271. [Google Scholar] [CrossRef]
- Smith, M.; Koren, V.; Zhang, Z.; Moreda, F.; Cui, Z.; Cosgrove, B.; Mizukami, N.; Kitzmiller, D.; Ding, F.; Reed, S.; et al. The distributed model intercomparison project—Phase 2: Experiment design and summary results of the western basin experiments. J. Hydrol. 2013, 507, 300–329. [Google Scholar] [CrossRef]
- Simpson, J.J.; Dettinger, M.D.; Gehrke, F.; McIntire, T.J.; Hufford, G.L. Hydrologic Scales, Cloud Variability, Remote Sensing, and Models: Implications for Forecasting Snowmelt and Streamflow. Weather Forecast. 2004, 19, 251–276. [Google Scholar] [CrossRef] [Green Version]
- Jeton, A.E.; Dettinger, M.D.; Smith, J.L. Potential Effects of Climate Change on Streamflow, Eastern and Western Slopes of the Sierra Nevada, California and Nevada; US Department of the Interior, US Geological Survey: Washington, DC, USA, 1996.
- Rango, A.; Martinec, J. Revisiting the Degree-Day Method for Snowmelt Computations1. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 657–669. [Google Scholar] [CrossRef]
- Garen, D.C.; Marks, D. Spatially distributed energy balance snowmelt modelling in a mountainous river basin: Estimation of meteorological inputs and verification of model results. J. Hydrol. 2005, 315, 126–153. [Google Scholar] [CrossRef]
- Kane, D.L.; Gieck, R.E.; Hinzman, L.D. Snowmelt Modeling at Small Alaskan Arctic Watershed. J. Hydrol. Eng. 1997, 2, 204–210. [Google Scholar] [CrossRef]
- Granberg, G.; Grip, H.; Löfvenius, M.O.; Sundh, I.; Svensson, B.H.; Nilsson, M. A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resour. Res. 1999, 35, 3771–3782. [Google Scholar] [CrossRef]
- Viviroli, D.; Zappa, M.; Gurtz, J.; Weingartner, R. An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ. Model. Softw. 2009, 24, 1209–1222. [Google Scholar] [CrossRef]
- Smith, T.J.; Marshall, L.A. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environ. Model. Softw. 2010, 25, 691–701. [Google Scholar] [CrossRef]
- Ohmura, A.; Kasser, P.; Funk, M. Climate at the Equilibrium Line of Glaciers. J. Glaciol. 1992, 38, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Rich, P.M.; Dubayah, R.; Hetrick, W.A.; Saving, S.C. Using Viewshed models to calculate intercepted solar radiation: Applications in ecology. Am. Soc. Photogramm. Remote Sens. 1994, 1994, 524–529. [Google Scholar]
- Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Ajami, N.K.; Gupta, H.; Wagener, T.; Sorooshian, S. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. J. Hydrol. 2004, 298, 112–135. [Google Scholar] [CrossRef] [Green Version]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Muttil, N.; Jayawardena, A.W. Shuffled Complex Evolution model calibrating algorithm: Enhancing its robustness and efficiency. Hydrol. Process. 2008, 22, 4628–4638. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Eckhardt, K.; Haverkamp, S.; Fohrer, N.; Frede, H.G. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Phys. Chem. Earth Parts A/B/C 2002, 27, 641–644. [Google Scholar] [CrossRef]
- Kalin, L.; Govindaraju, R.S.; Hantush, M.M. Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. J. Hydrol. 2003, 276, 89–111. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Regionalisation of catchment model parameters. J. Hydrol. 2004, 287, 95–123. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Kapnick, S.; Hall, A. Observed Climate–Snowpack Relationships in California and their Implications for the Future. J. Clim. 2010, 23, 3446–3456. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, N.; Arora, M. Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. J. Hydrol. 2000, 235, 1–11. [Google Scholar] [CrossRef]
- Singh, V.; Singh, P.; Bishop, M.; Björnsson, H.; Haritashya, U.; Haeberli, W.; Oerlemans, J.; Shroder, J.; Tranter, M. Encyclopedia of Snow, Ice and Glaciers; Springer: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Koren, V.; Reed, S.; Smith, M.; Zhang, Z.; Seo, D.J. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. J. Hydrol. 2004, 291, 297–318. [Google Scholar] [CrossRef] [Green Version]
- Ciarapica, L.; Todini, E. TOPKAPI: A model for the representation of the rainfall-runoff process at different scales. Hydrol. Process. 2002, 16, 207–229. [Google Scholar] [CrossRef]
- Shamir, E.; Georgakakos, K.P. Distributed snow accumulation and ablation modeling in the American River basin. Adv. Water Resour. 2006, 29, 558–570. [Google Scholar] [CrossRef]
- Shamir, E.; Georgakakos, K.P. Estimating snow depletion curves for American River basins using distributed snow modeling. J. Hydrol. 2007, 334, 162–173. [Google Scholar] [CrossRef]
Parameter | Correction Factor | Effective Parameter |
---|---|---|
Static storage (mm) | ||
Vegetation cover index | ||
Infiltration capacity (mmh) | ||
Overland flow velocity (ms) | ||
Percolation capacity (mmh) | ||
Interflow velocity (mmh) | ||
Deep aquifer permeability (mmh) | ||
Connected aquifer permeability (mmh) | ||
River channel velocity (mms) |
Snowmelt Model | Parameter | Effective Parameter |
---|---|---|
(mmCd | ||
MHO | (mmCd | |
C) | ||
(mmCd | ||
MDI | (mmCd | |
C) |
Modeling Phase | GRDN2 (1) | CMEC1 (1) | NFDC1 (2) |
---|---|---|---|
Warm Up | Oct./1991–Sep./1992 | Oct./1991–Sep./1992 | Oct./1991–Sep./1992 |
Calibration | Oct./1992–Sep./1994 | Oct./1992–Sep./1994 | |
Temporal validation | Oct./1994–Sep./2000 | Oct./1994–Sep./2000 | |
Spatial validation | Oct./1992–Sep./1994 | ||
Spatio-temporal validation | Oct./1994–Sep./2000 | ||
Gauges Carson basin and American basin |
Effective | Carson Basin | American Basin | ||||
---|---|---|---|---|---|---|
Parameter | MHO | MDI-1 | MDI-6 | MHO | MDI-1 | MDI-6 |
112.43 | 125.6 | 113.31 | 192.33 | 187.16 | 200.07 | |
0.77 | 0.50 | 0.52 | 1.38 | 1.34 | 1.30 | |
30.02 | 43.52 | 26.51 | 18.64 | 18.64 | 17.70 | |
2.94 | 1.56 | 0.69 | 2.74 | 2.31 | 2.58 | |
8.39 | 19.47 | 14.47 | 4.89 | 6.66 | 4.80 | |
16.1 × 10 | 21.6 × 10 | 12.3 × 10 | 5.8 × 10 | 6.3 × 10 | 6.9 × 10 | |
0.89 | 1.43 | 1.96 | 0.0 | 0.0 | 0.0 | |
41.70 | 301.88 | 58.01 | 33.65 | 85.30 | 32.30 | |
1.36 | 0.87 | 1.29 | 0.99 | 1.32 | 1.04 | |
3.39 | 1.2–3.7 | 0.34–3.90 | 3.51 | 0.93–4.8 | 0.23–3.21 | |
3.17 | 1.3–4.0 | 0.7–7.3 | 7.96 | 1.19–6.2 | 0.24–3.40 | |
2.54 | 1.80 | 2.91 | 2.05 | 1.64 | 1.17 |
Gauges | Statistics | Wet Period | Dry Period | ||||
---|---|---|---|---|---|---|---|
MHO | MDI-1 | MDI-6 | MHO | MDI-1 | MDI-6 | ||
GRDN2 | NSE | 0.926 | 0.877 | 0.900 | 0.351 | 0.425 | 0.737 |
RMSE (ms) | 4.492 | 5.823 | 5.316 | 4.787 | 4.508 | 3.049 | |
NFDC1 | NSE | 0.896 | 0.894 | 0.890 | <0 | <0 | 0.573 |
RMSE (ms) | 11.999 | 12.117 | 12.314 | 9.942 | 8.104 | 4.994 |
Basin | Gauges | Model | NSE | RMSE (ms |
---|---|---|---|---|
MHO | 0.756 | 29.975 | ||
American | NFDC1 (temporal) | MDI-1 | 0.743 | 34.814 |
MDI-6 | 0.786 | 29.721 | ||
MHO | 0.757 | 8.967 | ||
GRDN2 (temporal) | MDI-1 | 0.735 | 9.358 | |
MDI-6 | 0.810 | 7.930 | ||
MHO | 0.873 | 4.437 | ||
Carson | CMEC1 (spatial) | MDI-1 | 0.875 | 4.399 |
MDI-6 | 0.881 | 4.289 | ||
MHO | 0.664 | 11.820 | ||
CMEC1 (spatio-temporal) | MDI-1 | 0.682 | 11.495 | |
MDI-6 | 0.751 | 10.186 |
Models | Carson Basin (GRND2) | American Basin (NFDC1) | ||
---|---|---|---|---|
NSE | RMSE (ms) | NSE | RMSE (ms) | |
HL-RDHM | 0.91 | 4.85 | 0.89 | 17.92 |
NWSRFS | 0.88 | 5.68 | 0.89 | 17.91 |
TOPKAPI | 0.81 | 7.01 | 0.87 | 19.68 |
GR4J | 0.80 | 6.57 | 0.73 | 28.89 |
TETIS-MHO | 0.77 | 7.70 | 0.76 | 27.12 |
TETIS-MDI-1 | 0.75 | 8.04 | 0.77 | 26.87 |
TETIS-MDI-6 | 0.85 | 6.75 | 0.83 | 25.93 |
Basin | SNOTEL | Model | Calibration | Validation | ||
---|---|---|---|---|---|---|
NSE | RMSE (mm) | NSE | RMSE (mm) | |||
Blue Canyon | MHO | 0.659 | 80.899 | 0.284 | 99.950 | |
MDI-1 | 0.547 | 93.280 | 0.210 | 104.96 | ||
American | (elev. 1609 m) | MDI-6 | 0.273 | 118.103 | 0.079 | 113.313 |
Huysink | MHO | 0.789 | 174.596 | <0 | 559.10 | |
MDI-1 | 0.847 | 148.763 | 0.427 | 538.85 | ||
(elev. 2011 m) | MDI-6 | 0.900 | 126.255 | <0 | 551.976 | |
Spratt Creek | MHO | <0 | 119.857 | <0 | 90.600 | |
MDI-1 | 0.154 | 92.157 | 0.382 | 57.604 | ||
(elev. 1863 m) | MDI-6 | <0 | 106.279 | <0 | 88.920 | |
Poison Flats | MHO | 0.840 | 90.459 | 0.701 | 115.889 | |
MDI-1 | 0.821 | 95.948 | 0.691 | 117.939 | ||
Carson | (elev. 2357 m) | MDI-6 | 0.867 | 82.858 | 0.824 | 88.921 |
Blue Lakes | MHO | 0.778 | 175.00 | 0.885 | 151.293 | |
MDI-1 | 0.844 | 146.894 | 0.917 | 128.082 | ||
(elev. 2455 m) | MDI-6 | 0.878 | 129.934 | 0.936 | 112.880 | |
Ebbetts Pass | MHO | 0.871 | 137.388 | 0.902 | 165.09 | |
MDI-1 | 0.916 | 110.98 | 0.892 | 173.307 | ||
(elev. 2671 m) | MDI-6 | 0.954 | 82.306 | 0.922 | 147.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orozco, I.; Francés, F.; Mora, J. Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins. Water 2019, 11, 1288. https://doi.org/10.3390/w11061288
Orozco I, Francés F, Mora J. Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins. Water. 2019; 11(6):1288. https://doi.org/10.3390/w11061288
Chicago/Turabian StyleOrozco, Ismael, Félix Francés, and Jesús Mora. 2019. "Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins" Water 11, no. 6: 1288. https://doi.org/10.3390/w11061288