Uptake of As(V) from Groundwater Using Fe-Mn Oxides Modified Kaolin Clay: Physicochemical Characterization and Adsorption Data Modeling
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Synthesis of the Adsorbent
2.3. Characterization
2.4. Arsenic Removal Experiments
2.5. Reusability of the Adsorbent
3. Results and Discussion
3.1. Adsorbent Characterization
3.2. Batch Experiments
3.2.1. Effect of Contact Time and Adsorption Kinetics
3.2.2. Effect of Adsorbate Concentration and Adsorption Isotherms
3.2.3. Adsorption Thermodynamics
3.2.4. Effect of Solution pH
3.2.5. Effect of Co-Existing Anions
3.2.6. Adsorbent Regeneration and Reusability
3.2.7. Comparison with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bretzler, A.; Lalanne, F.; Nikiema, J.; Podgorski, J.; Pfanninnger, M.; Berg, M.; Schirmer, M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 2017, 584–585, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Minatel, B.C.; Sage, A.P.; Anderson, C.; Hubaux, R.; Marshall, E.M.; Lam, W.L.; Martinez, V.D. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ. Int. 2018, 112, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, A.; Khan, Z.K.; Renzaho, A.M.N. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicol. Eviron. Saf. 2018, 150, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Paul, B. The global menace of arsenic and its convectional remediation—A critical review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization (WHO): Geneva, Switzerland, 2017. [Google Scholar]
- Mudzielwana, R.; Gitari, W.M.; Ndungu, P. Evaluation of the adsorptive properties of locally available alumino-silicate clay in As(III) and As(V) remediation from groundwater. Phys. Chem. Earth Part A/B/C 2018. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Wang, L.; Zheng, T.; Ren, G.; Li, J.; Ma, J.; Zhang, Z.; Song, H.; Zhang, Z.; et al. A novel nanostructured Fe-Ti-Mn composite oxide doe highly efficient arsenic removal: Preparation and performance evaluation. Colloids Surf. A 2019, 561, 364–372. [Google Scholar] [CrossRef]
- Saleh, T.A.; Sari, A.; Tuzen, M. Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies. J. Mol. Liq. 2016, 937–945. [Google Scholar] [CrossRef]
- Jeon, E.K.; Ryu, S.; Park, S.W.; Wang, L.; Tsang, D.C.W.; Baek, K. Enhanced adsorption of arsenic onto alum sludge modified by calcination. J. Clean. Prod. 2018, 176, 54–62. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Qu, J.; Jefferson, W. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid. J. Colloid Interface. Sci. 2012, 366, 141–146. [Google Scholar] [CrossRef]
- Uddin, K.F. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Ozola, R.; Krauklis, A.; Leitietis, M.; Burlakovs, J.; Vircava, I.; Bertina, L.A.; Bhatnager, A.; Klavin, M. FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. 2019, 13, 364–372. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Z.; Luo, H.; Dang, Z.; Yang, C.; Li, L. Adsorption of arsenic on modified montomorillonite. Appl. Clay Sci. 2014, 17–98, 17–23. [Google Scholar] [CrossRef]
- Lalhamunsiama; Pawar, R.R.; Hong, S.M.; Jin, K.J.; Lee, S.M. Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions. J. Mol. Liq. 2017, 240, 497–503. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid. Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.; You, S.J.; Bendegharaie, A.H.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Thakre, D.; Rayalu, S.; Kawade, R.; Meshram, S.; Subrt, J.; Labhsetwar, N. Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater. 2010, 180, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.P.; Hsu, C.M.; Lee, W.C.; Bhattacharyya, P.; Bundschuh, J.; Chen, C.Y. Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption Thermodynamics. Environ. Nanotechnol. Monit. Manag. 2018, 9, 18–28. [Google Scholar] [CrossRef]
- Lin, L.; Qui, W.; Wang, D.; Huang, Q.; Song, Z.; Chaud, H.W. Arsenic removal in aquous solutions by novel Fe-Mn modified biochar composite: Characterization and mechanisms. Ecotoxicol. Environ. Saf. 2017, 514–521. [Google Scholar] [CrossRef]
- Lee, S.M.; Lalhmunsiama; Thanhmingliana; Tiwari, D. Porous hybrid materials in the remediation of water contaminated with As(III) and As(V). Chem. Eng. J. 2015, 270, 496–507. [Google Scholar] [CrossRef]
- Boglione, R.; Griffa, C.; Panigatti, M.C.; Keller, S.; Schierano, M.C.; Asforno, M. Arsenic adsorption by soil from Misiones Province, Argenita. Environ. Technol. Innov. 2019, 13, 30–36. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Jing, M.; Li, C. Enhanced arsenic removal from drinking water by FeOOH/-Al2O3 granules. J. Alloys Compd. 2018, 735, 1620–1628. [Google Scholar] [CrossRef]
Oxides (%w/w) | SiO2 | Al2O3 | Fe2O3 | MnO | Na2O | MgO | CaO | K2O | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
RK | 56.06 | 22.05 | 3.88 | 0.01 | 2.3 | 0.57 | 0.95 | 0.16 | 1.76 | 11.2 |
FMK | 45.39 | 15.08 | 16.66 | 6.02 | 4.14 | LOD | 0.55 | 0.13 | 1.31 | 8.46 |
Clays | BET Surface Area (m2/g) | Pore Volume (cc/g) | Pore Diameter (nm) |
---|---|---|---|
RK | 19.02 | 0.04 | 9.54 |
FMK | 29.8 | 0.083 | 8.5 |
Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|
qe exp (mg/g) | K1 (min−1) | qe cal (mg/g) | R2 | K2 (mg/g. min−1) | qe cal (mg/g) | R2 |
5.36 | 0.011 | 1.42 | 0.89 | 0.05 | 5.49 | 0.99 |
Kid1 (mg/g. min1/2) | C1 | Kid2 (mg/g. min1/2) | C2 | Kid3 (mg/g. min1/2) | C3 |
---|---|---|---|---|---|
0.2 | 3.54 | 0.16 | 4.27 | 0.05 | 5.1 |
Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|
qm (mg/g) | KL(L/mg) | R2 | RL | Kf (mg/g) | 1/n | R2 | |
298 K | 1.67 | 0.54 | 0.98 | 0.62–0.05 | 0.7 | 0.28 | 0.91 |
308 K | 2.08 | 0.62 | 0.97 | 0.64–0.05 | 0.85 | 0.32 | 0.95 |
323 K | 2.44 | 0.64 | 0.97 | 0.60–0.04 | 1.08 | 0.32 | 0.96 |
∆G° (KJ/mol) | ∆H° (KJ/mol) | ∆S° (J/mol) |
---|---|---|
298 K = −25.54 303 K = −27.12 323 K = −28.94 | 14.2 | 134.1 |
Adsorbent | Experimental Conditions | As(V) Adsorption Capacity | References |
---|---|---|---|
Raw kaolin clay soils | Adsorbate concentration: 1–15 mg/L; adsorbent dosage: 0.7 g/100 mL | 1.08 mg/g | Mudzielwana et al. [6] |
FeOOH modified clay | Adsorbate concentration: 5–400 mg/g; adsorbent dosage: 0.5 g/40 mL. | 15.62 mg/g | Ozola et al. [12] |
Lateritic soils | Adsorbate concentration: 0.01–30 mg/L; adsorbate dosage: 1 g/100 mL | 2.0 mg/g | Boglione et al. [21] |
FeOOH/Al2O3 granules | Adsorbate concentration: 10–100 mg/L; Adsorbent dosage: 1.10 g/220 mL | 3.451 mg/g | Wang et al. [22] |
FMK | Adsorbate concentration: 1–30 mg/L; adsorbent dosage: 0.4 g/100 mL | 2.44 mg/g | Present study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudzielwana, R.; Gitari, M.W.; Ndungu, P. Uptake of As(V) from Groundwater Using Fe-Mn Oxides Modified Kaolin Clay: Physicochemical Characterization and Adsorption Data Modeling. Water 2019, 11, 1245. https://doi.org/10.3390/w11061245
Mudzielwana R, Gitari MW, Ndungu P. Uptake of As(V) from Groundwater Using Fe-Mn Oxides Modified Kaolin Clay: Physicochemical Characterization and Adsorption Data Modeling. Water. 2019; 11(6):1245. https://doi.org/10.3390/w11061245
Chicago/Turabian StyleMudzielwana, Rabelani, Mugera Wilson Gitari, and Patrick Ndungu. 2019. "Uptake of As(V) from Groundwater Using Fe-Mn Oxides Modified Kaolin Clay: Physicochemical Characterization and Adsorption Data Modeling" Water 11, no. 6: 1245. https://doi.org/10.3390/w11061245