Condition Assessment of Water Infrastructures: Application to Segura River Basin (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Asset Inventory Development
2.1.2. Asset Hierarchy
2.1.3. Asset Inventory Database Structure
2.2. Asset Condition Assessment
2.2.1. Value-Based Condition Assessment of Assets
2.2.2. Maintenance-Based Condition Assessment of Assets
2.3. Investigation of Case Study
3. Results
3.1. Results of Element Condition (Level 4)
3.1.1. Results for Elements of Asset 1
3.1.2. Results for Elements of Asset 2
3.2. Results of Asset Condition (Level 3)
3.3. Results of Operational Sub-System Condition (Level 2)
3.4. Sensitivity Analysis
3.5. Assessing Future Asset Condition under Different Scenarios of Investment Effort
3.5.1. Results for Asset 1
3.2.2. Results for Asset 2
4. Discussion
4.1. Asset Inventory
4.2. Main Parameters in the Calculation of the ASI and IVI Indices
4.3. Asset and OSS Condition by Year 2015
4.4. Future Asset Condition Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Bakker, K. From State to market?: Water mercantilization in Spain. Environ. Plan. 2002, 34, 767–790. [Google Scholar] [CrossRef]
- González-Gómez, F.; García-Rubio, M.A.; González-Martínez, J. Beyond the public-private controversy in urban water management in Spain. Util. Policy 2014, 31, 1–9. [Google Scholar] [CrossRef]
- Garcia-Rubio, M.A.; Ruiz-Villaverde, A.; González-Gómez, F. Urban water tariffs in Spain: What needs to be done? Water 2015, 7, 1456–1479. [Google Scholar] [CrossRef]
- Schneider, J.; Gaul, A.J.; Neumann, C.; Hogräfer, J.; Wellβow, W.; Schwan, M.; Schnettler, A. Asset management techniques. Electr. Power Energy Syst. 2006, 28, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R. Fair value, earnings management and asset impairment: The impact of a change in the regulatory environment. Procedia Econ. Financ. 2012, 2, 16–25. [Google Scholar] [CrossRef]
- Zayed, T.; Mohamed, E. Budget allocation and rehabilitation plans for water systems using simulation approach. Tunn. Undergr. Space Technol. 2013, 36, 34–45. [Google Scholar] [CrossRef]
- Giustolisi, O.; Berardi, L.; Laucelli, D. Supporting decision on energy vs. asset cost optimization in drinking water distribution networks. Procedia Eng. 2014, 70, 734–743. [Google Scholar] [CrossRef]
- Rehan, R.; Knight, M.A.; Unger, A.J.A.; Hass, C.T. Financially sustainable management strategies for urban wastewater collection infrastructure—Development of a system dynamics model. Tunn. Undergr. Space Technol. 2014, 39, 116–129. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W. Cost modelling in maintenance strategy optimization for infrastructure assets with limited data. Reliab. Eng. Syst. Saf. 2014, 130, 33–41. [Google Scholar] [CrossRef]
- Ward, B. Integrated Asset Management Systems for Water Infrastructure. Ph.D. Thesis, University of Exeter, Exeter, UK, 2015. [Google Scholar]
- Korving, H.; Langeveld, J.G.; Palsma, A.J.; Beenen, A.S. Uniform registration of failures in wastewater systems (SUF-SAS). In Proceedings of the NOVATECH—6th International Conference, Lyon, France, 25–28 June 2007; GRAIE: Villeurbanne, France, 2007; pp. 957–964. [Google Scholar]
- Makaya, E.; Hensel, O. Water distribution system efficiency assessment indicators—Concepts and applications. Int. J. Sci. Res. 2012, 3, 219–228. [Google Scholar]
- Marlow, D.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef]
- Zio, E. Challenges in the vulnerability and risk analysis of critical infrastructures. Reliab. Eng. Syst. Saf. 2016, 52, 137–150. [Google Scholar] [CrossRef]
- Rahim, Y.; Refsdal, I.; Kenett, R.S. The 5C model: A new approach to asset integrity management. Int. J. Press. Vessel. Pip. 2010, 87, 88–93. [Google Scholar] [CrossRef]
- El-Akruti, K.; Dwight, R.; Zhang, T. The strategic role of engineering asset management. Int. J. Prod. Econ. 2013, 146, 227–239. [Google Scholar] [CrossRef]
- Renaud, E.; Le Gat, Y.; Poulton, M. Using a break prediction model for drinking water networks asset management: From research to practice. Water Sci. Technol. Water Supply 2012, 12, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.; Mirrless-Black, J. A framework for valuing water in England and Wales. Util. Policy 2012, 23, 13–30. [Google Scholar] [CrossRef]
- Scholten, L.; Scheidegger, A. Strategic rehabilitation planning of piped water networks using multicriteria decision analysis. Water Res. 2014, 49, 124–143. [Google Scholar] [CrossRef]
- Younis, R.; Knight, M.A. Development and implementation of an asset management framework for wastewater collection networks. Tunn. Undergr. Space Technol. 2014, 39, 130–143. [Google Scholar] [CrossRef]
- Heo, C.G.; Bae, S.J. Life-Cycle Cost Analysis of dams maintenance for decision making. Korea Infrastruct. Saf. Technol. Corp. 2009, 33, 52–67. [Google Scholar]
- Du, F.; Woods, G.J.; Kang, D.; Lansey, K.E.; Arnold, R.G. Life cycle analysis for water and wastewater pipe materials. J. Environ. Eng. 2013, 139, 703–711. [Google Scholar] [CrossRef]
- Lee, H.; Shin, H.; Rasheed, U.; Kong, M. Establishment of an inventory for the Life Cycle Cost (LCC) analysis of a water supply system. Water 2017, 9, 592. [Google Scholar]
- Dlamini, D. Improving Water Asset Management When Data Are Sparse. Ph.D. Thesis, Cranfield University, Bedford, UK, 2013. [Google Scholar]
- Morimoto, R. Estimating the benefits of effectively and proactively maintaining infrastructure with the innovative Smart Infrastructure Sensor System. Socio-Econ. Plan. Sci. 2010, 44, 247–257. [Google Scholar] [CrossRef]
- Davis, P.; Sullivan, E.; Marlow, D.; Mamey, D. A selection framework for infrastructure condition monitoring technologies in water and wastewater networks. Expert Syst. Appl. 2013, 40, 1947–1958. [Google Scholar] [CrossRef]
- Hassan, J.; Khan, F. Risk-based asset integrity indicators. J. Loss Prev. Proc. 2012, 25, 544–554. [Google Scholar] [CrossRef] [Green Version]
- Francis, R.A.; Guikema, S.D.; Henneman, L. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks. Reliab. Eng. Syst. Saf. 2014, 130, 1–11. [Google Scholar] [CrossRef]
- Baily, M.J. Inter-Governmental Co-Operation in the North Sea Oil and Gas Industry; Health and Safety Executive: Bootle, UK, 2002; Available online: http://www.npd.no/English/Om+OD/Internasjonalt+samarbeid/NSOAF.htm (accessed on 5 July 2002).
- Too, E.G. Capabilities for Strategic Infrastructure Asset Management. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2009. [Google Scholar]
- Rehan, R.; Knight, M.A. Application of system dynamics for developing financially self-sustaining management policies for water and wastewater systems. Water Res. 2011, 45, 4737–4750. [Google Scholar] [CrossRef]
- Salman, A. Reliability-Based Management of Water Distribution Networks. Ph.D. Thesis, Concordia University, Montréal, QC, Canada, 2011. [Google Scholar]
- Kabir, G.; Tesfamariam, S. Evaluating risk of water mains failure using a Bayesian belief network model. Eur. J. Oper. Res. 2015, 240, 220–234. [Google Scholar] [CrossRef]
- Bruaset, S.; Saegrov, S.; Ugarelli, R. Performance-based modelling of long-term deterioration to support rehabilitation and investment decisions in drinking water distribution systems. Urban Water J. 2018, 15, 46–52. [Google Scholar] [CrossRef]
- Ye, X.W.; Liu, T.; Zhang, D.F.; Li, J.; Liu, Z.F.; Zhang, L. Applications of Optical Fiber Sensing Technology in Monitoring of Geotechnical Structures. In Environmental Vibrations and Transportation Geodynamics; Bian, X., Chen, Y., Ye, X., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Hao, T.; Rogers, C.D.F.; Metje, N.; Chapman, D.N.; Muggleton, J.M.; Foo, K.Y.; Wang, P.; Pennock, S.R.; Atkins, P.R.; Swingler, S.G.; et al. Condition assessment of the buried utility service infrastructure. Tunn. Undergr. Space Technol. 2012, 28, 331–344. [Google Scholar] [CrossRef]
- Rizzo, P. Water and wastewater pipe non-destructive evaluation and health monitoring: A review. Adv. Civ. Eng. 2010, 2010, 818597. [Google Scholar]
- Tuhovcak, L.; Taus, M.; Mika, P. Indirect condition assessment of water mains. Proc. Eng. 2014, 70, 1669–1678. [Google Scholar] [CrossRef]
- Kleiner, Y.; Nafi, A.; Rajani, B. Planning renewal of water mains while considering deterioration, economies of scale and adjacent infrastructure. In Proceedings of the 2nd International Conference on Water Economics, Statistics and Finance, Alexandroupolis, Greece, 3–5 July 2009. [Google Scholar]
- Alvisi, S.; Franchini, M. Comparative analysis of two probabilistic pipe breakage models applied to a real water distribution system. Civ. Eng. Environ. Syst. 2010, 27, 1–22. [Google Scholar] [CrossRef]
- Falls, L.C.; Haas, R.; Tighe, S. A comparison of asset valuation methods for civil infrastructure. In Proceedings of the 2004 Annual Conference of the Transportation Association of Canada, Quebec City, QC, Canada, 19–22 September 2004. [Google Scholar]
- Alegre, H.; Vitorino, D.; Coelho, S. Infrastructure Value Index: A powerful modelling tool for combined long-term planning of linear and vertical assets. Proc. Eng. 2014, 89, 1428–1436. [Google Scholar] [CrossRef]
- Federal Highway Administration. Financial Planning for Transportation Asset Management. An Overview; Report 1; US Department of Transportation: Washington, DC, USA, 2015. Available online: https://www.fhwa.dot.gov/asset/ (accessed on 5 June 2018).
- Coelho, S.T.; Vitorino, D.; Alegre, H. AWARE-P: A System-Based Software for Urban Water IAM Planning; IWA LESAM: Sydney, Australia, 2013. [Google Scholar]
- Leitão, J.P.; Coelho, S.P.; Alegre, H.; Cardoso, M.A.; Silva, M.S.; Ramalho, P.; Ribeiro, R.; Covas, D.; Vitorino, D.; Almeida, M.C.; et al. The iGPI Collaborative Project: Moving IAM from Science to Industry; IWA LESAM: Sydney, Australia, 2013. [Google Scholar]
- Federal Highway Administration. Asset Management Financial Report Series: The Vermont Experience: A Case Study; Report 6; US Department of Transportation: Washington, DC, USA, 2017. Available online: https://www.fhwa.dot.gov/asset/ (accessed on 15 May 2019).
- García-Cantón, A. Guía Técnica para la Caracterización de Medidas a Incluir en los Planes Hidrológicos y Estudios de Viabilidad, 1st ed.; CEDEX: Madrid, Spain, 2012. [Google Scholar]
- Construction Industry Development Board. Infrastructure Maintenance Budgeting Guideline. Available online: http://www.cidb.org.za/publications/Pages/Infrastructure-Maintenance.aspx/ (accessed on 21 June 2018).
Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|
Operational System | Operational Sub-System | Storage, Diversion and Flood Protection Facilities, Water Wells, Water Conveyance Facilities, Water Distribution Facilities, Wastewater Treatment Plants and the River Basin’s Hydrologic Information System | civil works, electromechanical equipment, electrical equipment, instrumentation equipment, building facilities, access roads |
Field | Description |
---|---|
System ID | Alpha-numerical code of operational system the asset belongs to |
Sub-System ID | Alpha-numerical code of operational sub-system the asset belongs to |
Asset ID | Alpha-numerical code of the asset |
Asset name | Asset description, linked with asset ID |
Asset position | Asset coordinates in geographical UTM system |
Cost | Construction cost (EUR), referred to a certain base year |
Commissioning | Date used for the calculation of elapsed years of service |
Service life | Expected years of service |
Salvage value | Value of the asset at the end of its economic life |
Intervention ID | Internal code of the investment and its associated information |
Intervention class | A: Investment in new elements B: Investments in renewal of existing elements C: Investments in maintenance D: Other investments, such as element upgrading |
Intervention cost | Monetary value of the investment associated with the intervention |
Intervention date | Date used for the calculation of time elapsed since the intervention |
Asset value | Monetary value of the asset at a given year, t |
ASI | Infrastructure Condition | Reliability |
---|---|---|
0.8 ≤ ASI < 1.0 | Good | Reliable |
0.6 ≤ ASI < 0.8 | Medium | Reliable |
0.4 ≤ ASI < 0.6 | Poor | Degenerated |
0.2 ≤ ASI < 0.4 | Very poor | Degenerated |
0 ≤ ASI < 0.2 | Failure | Unpredictable |
Asset-1 | Asset-2 | |
---|---|---|
System ID | OS-1 | OS-1 |
Sub-System ID | OSS-1 | OSS-1 |
Sub-System description | Water distribution system for supply and irrigation of 540 Mm3/year | |
Asset ID | A-1 | A-2 |
Asset description | Storage Facility (Gravity dam, height 61 m, reservoir volume 246 Mm3) | Water Conveyance Facility (Channel with max. capacity of 10 m3/s) |
Base year for costs | 2015 | 2015 |
Construction cost (M EUR 1) | 58.2 | 176.9 |
Civil cost (M EUR) | 53.9 | 156.5 |
Electromechanical cost (M EUR) | 1.5 | 5.5 |
Electrical cost (M EUR) | 0.5 | 9.3 |
Instrumentation cost (M EUR) | 1.0 | 0.5 |
Access road cost (M EUR) | 0.9 | 3.4 |
Building facilities cost (M EUR) | 0.3 | 1.7 |
Year of commissioning | 1985 | 1989 |
Service life (years) | 50 | 50 |
Salvage Value (M EUR) | 44.6 | 84.2 |
Elements | Service Life (Years) | Salvage Value (% of Construction Cost) |
---|---|---|
civil works | 50 | 80% (Storage, Diversion and Flood Protection Facilities) 75% (System Information Facilities, SAIH) 50% (Water Wells, Water Conveyance Facilities, Water Distribution Facilities and Wastewater Treatment Plants) |
electromechanical equip. | 25 | 20% |
electrical equipment | 15 | 10% |
instrumentation equipment | 15 | 10% |
building facilities | 50 | 75% |
access roads | 50 | 75% |
Level 4—Elements | m | Amount Needed Per Year |
---|---|---|
Civil works | 0.01 | m × Asset Value |
Electromechanical equipment | 0.04 | |
Electrical equipment | 0.06 | |
Instrumentation equipment | 0.06 | |
Building facilities | 0.05 | |
Access roads | 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urrea-Mallebrera, M.; Altarejos-García, L.; García-Bermejo, J.; Collado-López, B. Condition Assessment of Water Infrastructures: Application to Segura River Basin (Spain). Water 2019, 11, 1169. https://doi.org/10.3390/w11061169
Urrea-Mallebrera M, Altarejos-García L, García-Bermejo J, Collado-López B. Condition Assessment of Water Infrastructures: Application to Segura River Basin (Spain). Water. 2019; 11(6):1169. https://doi.org/10.3390/w11061169
Chicago/Turabian StyleUrrea-Mallebrera, Mario, Luis Altarejos-García, Juan García-Bermejo, and Bartolomé Collado-López. 2019. "Condition Assessment of Water Infrastructures: Application to Segura River Basin (Spain)" Water 11, no. 6: 1169. https://doi.org/10.3390/w11061169