The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study and Data Collection
2.2. Morphometric Analysis and Assign Preliminary Priority Rank to the SWs
2.3. Principal Component Analysis and Weighted-Sum Approach
2.3.1. Principal Component Analysis
2.3.2. Weighted-Sum Approach
3. Application Results and Analysis
3.1. Principal Component Analysis of Morphometric Variables
3.2. Weighted-Sum Analysis of Significant Morphometric Variables
3.3. Prioritization of SW Using PCWSA
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Aher, P.; Adinarayana, J.; Gorantiwar, S. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. J. Hydrol. 2014, 511, 850–860. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Hassan, A.M. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 2011, 62, 611–623. [Google Scholar] [CrossRef]
- Bagherzadeh, A. Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran. Arab. J. Geosci. 2014, 7, 211–220. [Google Scholar] [CrossRef]
- Shrimali, S.S.; Aggarwal, S.P.; Samra, J.S. Prioritizing erosion-prone areas in hills using remote sensing and GIS — a case study of the Sukhna Lake catchment, Northern India. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 54–60. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Appl. Water Sci. 2013, 4, 51–61. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Singh, P.K.; Singh, M.; Yadav, K.K.; Mittal, H.K. Catchment delineation and morphometric analysis using geographical information system. Water Sci. Technol. 2015, 72, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Farhan, Y.; Anaba, O. A Remote Sensing and GIS Approach for Prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) Based on Morphometric and Soil Erosion Susceptibility Analysis. J. Geogr. Inf. Syst. 2016, 8, 1–19. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Duraisamy, K.; Thirumalaisamy, S.; Krishnaraj, S.; Yatheendradasan, R.K. Prioritization of subwatersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arab. J. Geosci. 2017, 10, 552. [Google Scholar] [CrossRef]
- Choudhari, P.P.; Nigam, G.K.; Singh, S.K.; Thakur, S. Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geol. Ecol. Landsc. 2018, 2, 256–267. [Google Scholar] [CrossRef]
- Sahu, U.; Panaskar, D.; Wagh, V.; Mukate, S. An extraction, analysis, and prioritization of Asna river sub-basins, based on geomorphometric parameters using geospatial tools. Arab. J. Geosci. 2018, 11, 517. [Google Scholar] [CrossRef]
- Ahmed, R.; Sajjad, H.; Husain, I. Morphometric Parameters-Based Prioritization of Sub-watersheds Using Fuzzy Analytical Hierarchy Process: A Case Study of Lower Barpani Watershed, India. Nat. Resour. Res. 2018, 27, 67–75. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: Using geospatial techniques. Appl. Water Sci. 2018, 8, 158. [Google Scholar] [CrossRef]
- Mangan, P.; Haq, M.A.; Baral, P. Morphometric analysis of watershed using remote sensing and GIS—a case study of Nanganji River Basin in Tamil Nadu, India. Arab. J. Geosci. 2019, 12, 202. [Google Scholar] [CrossRef]
- Pandey, A.; Chowdary, V.M.; Mal, B.C. Morphological analysis and watershed management using geographic information system. Hydrol. J. 2004, 24, 71–84. [Google Scholar]
- Khan, M.A.; Gupta, V.P.; Moharana, P.C. Watershed prioritization using remote sensing and geographical information system: A case study from Guhiya, India. J. Arid Environ. 2001, 49, 465–475. [Google Scholar] [CrossRef]
- Thakkar, A.K.; Dhiman, S.D. Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 2007, 35, 313–321. [Google Scholar] [CrossRef]
- Das, D. Identification of Erosion Prone Areas by Morphometric Analysis Using GIS. J. Inst. Eng. Ser. A 2014, 95, 61–74. [Google Scholar] [CrossRef]
- Kandpal, H.; Kumar, A.; Reddy, C.P.; Malik, A. Geomorphologic parameters based prioritization of hilly sub-watersheds using remote sensing and geographical information system. J. Soil Water Conserv. 2018, 17, 232. [Google Scholar] [CrossRef]
- Prabhakaran, A.; Raj, N.J. Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Appl. Water Sci. 2018, 8, 31. [Google Scholar] [CrossRef]
- Kumar, P.; Rajeev, R.; Chandel, S.; Narayan, V.; Prafull, M. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Appl. Water Sci. 2018, 8, 15. [Google Scholar]
- Gaikwad, R.; Bhagat, V. Multi-Criteria Watershed Prioritization of Kas Basin in Maharashtra India: AHP and Influence Approaches. Hydrospatial Anal. 2018, 1, 41–61. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kandpal, H. Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arab. J. Geosci. 2019, 12, 118. [Google Scholar] [CrossRef]
- Meshram, S.G.; Sharma, S.K. Prioritization of watershed through morphometric parameters: A PCA-based approach. Appl. Water Sci. 2015, 7, 1505–1519. [Google Scholar] [CrossRef]
- Adhami, M.; Sadeghi, S.H. Sub-watershed prioritization based on sediment yield using game theory. J. Hydrol. 2016, 541, 977–987. [Google Scholar] [CrossRef]
- Farhan, Y.; Anbar, A.; Al-Shaikh, N.; Mousa, R. Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agric. Sci. 2017, 8, 113–148. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gajbhiye, S.; Tignath, S. Application of principal component analysis in grouping geomorphic parameters of a watershed for hydrological modeling. Appl. Water Sci. 2015, 5, 89–96. [Google Scholar] [CrossRef]
- Meshram, S.G.; Sharma, S.K. Application of Principal Component Analysis for Grouping of Morphometric Parameters and Prioritization of Watershed. In Hydrologic Modeling; Springer: Singapore, 2018; pp. 447–458. ISBN 9789811058011. [Google Scholar]
- Singh, O.; Singh, J. Soil Erosion Susceptibility Assessment of the Lower Himachal Himalayan Watershed. J. Geol. Soc. India 2018, 92, 157–165. [Google Scholar] [CrossRef]
- Kadam, A.K.; Jaweed, T.H.; Umrikar, B.N.; Hussain, K.; Sankhua, R.N. Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Model. Earth Syst. Environ. 2017, 3, 1663–1673. [Google Scholar] [CrossRef]
- Kadam, A.K.; Jaweed, T.H.; Kale, S.S.; Umrikar, B.N.; Sankhua, R.N. Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: A remote sensing and GIS approach. Geomatics Nat. Hazards Risk 2019, 10, 986–1006. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain area, Virginia and Tennessee; Department of Geology, Columbia University: New York, NY, USA, 1953. [Google Scholar]
- Rai, P.K.; Mohan, K.; Mishra, S.; Ahmad, A.; Mishra, V.N. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Appl. Water Sci. 2017, 7, 217–232. [Google Scholar] [CrossRef]
- Suresh, R. Soil and water conservation engineering. Stand. Publ. Distrib. Delhi 2007, 799–812. [Google Scholar]
- Kumar, A.; Darmora, A.; Sharma, S. Comparative Assessment of Hydrologic Behaviour of Two Mountainous Watersheds Using Morphometric Analysis. Hydrol. J. 2012, 35, 14. [Google Scholar] [CrossRef]
- Smith, K. Standards for grading textures of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Kandpal, H.; Kumar, A.; Reddy, C.P.; Malik, A. Watershed prioritization based on morphometric parameters using remote sensing and geographical information system. Indian J. Ecol. 2017, 44, 433–437. [Google Scholar]
- Pearson, K. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 392–402. [Google Scholar]
Linear Variables | Formula | References |
---|---|---|
Basin area (A) | Plan area of watershed (km2) | |
Basin perimeter (P) | Perimeter of watershed (km) | |
Stream order (u) | Hierarchical rank | [31] |
Stream length (Lu) | Length of stream (km) | [31] |
Mean stream length () | where is the mean stream length (km), is the total length of stream of order u, is the total number of streams of order u | [32] |
Basin length () | , (km) | [33] |
Bifurcation ratio (Rb) | where is the number of stream segments of ()th order | [33] |
Areal Variables | Formula | References |
---|---|---|
Drainage density (Dd) | , (km/km2) where is the total length of stream of all orders (km) | [34] |
Stream frequency (Fs) | , (1/km2) | [34] |
Texture ratio (Rt) | , (1/km) | [31] |
Mean length of overland flow | where is the mean length of overland flow (km) | [31] |
Shape Variables | Formula | References |
---|---|---|
Form factor (Ff) | , | [34] |
Circularity ratio (Rc) | , | [35] |
Compactness coefficient (Cc) | , | [32] |
Elongation ratio (Re) | , | [33] |
Sub-Watershed (SW) Name | Characteristic Variables | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A (km2) | P (km) | Streams Order (u) | Nu | Lu (km) | (km) | (km) | |||||
1 | 2 | 3 | 4 | 5 | |||||||
SW-1 | 34.849 | 32.844 | 14 | 3 | 0 | 0 | 1 | 18 | 31.593 | 1.755 | 11.422 |
SW-2 | 7.111 | 16.946 | 2 | 0 | 0 | 0 | 1 | 03 | 12.527 | 4.176 | 6.576 |
SW-3 | 22.552 | 24.341 | 9 | 2 | 1 | 0 | 0 | 12 | 17.654 | 1.471 | 7.601 |
SW-4 | 28.089 | 25.942 | 13 | 3 | 0 | 0 | 1 | 17 | 23.024 | 1.354 | 8.223 |
SW-5 | 29.710 | 31.826 | 9 | 2 | 1 | 0 | 1 | 13 | 21.156 | 1.627 | 11.604 |
SW-6 | 51.857 | 39.913 | 24 | 6 | 1 | 1 | 0 | 32 | 37.660 | 1.177 | 13.809 |
SW-7 | 59.623 | 37.456 | 23 | 6 | 2 | 1 | 0 | 32 | 41.441 | 1.295 | 10.664 |
SW-8 | 23.367 | 28.875 | 9 | 2 | 1 | 0 | 0 | 12 | 20.980 | 1.748 | 11.582 |
SW-9 | 37.654 | 30.361 | 12 | 2 | 1 | 0 | 0 | 15 | 28.798 | 1.919 | 8.944 |
Sub-Watershed | Sub-Watershed Wise Morphometric Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|
Linear | Areal | Shape | |||||||
(km/km2) | (km−2) | (km−1) | (km) | ||||||
SW-1 | 3.476 | 0.906 | 0.516 | 0.548 | 0.551 | 0.267 | 0.406 | 1.557 | 0.583 |
SW-2 | 2.000 | 1.759 | 0.421 | 0.176 | 0.284 | 0.164 | 0.311 | 1.778 | 0.457 |
SW-3 | 2.621 | 0.782 | 0.532 | 0.493 | 0.638 | 0.390 | 0.478 | 1.435 | 0.704 |
SW-4 | 3.391 | 0.819 | 0.605 | 0.655 | 0.610 | 0.415 | 0.524 | 1.370 | 0.727 |
SW-5 | 1.619 | 0.712 | 0.437 | 0.408 | 0.702 | 0.220 | 0.368 | 1.635 | 0.530 |
SW-6 | 2.289 | 0.726 | 0.617 | 0.801 | 0.688 | 0.271 | 0.409 | 1.551 | 0.588 |
SW-7 | 2.552 | 0.695 | 0.536 | 0.854 | 0.719 | 0.524 | 0.534 | 1.358 | 0.817 |
SW-8 | 2.621 | 0.897 | 0.513 | 0.4155 | 0.556 | 0.174 | 0.352 | 1.672 | 0.470 |
SW-9 | 2.884 | 0.764 | 0.398 | 0.494 | 0.653 | 0.471 | 0.513 | 1.385 | 0.774 |
Sub-Watershed | Linear | Areal | Shape | ||||||
---|---|---|---|---|---|---|---|---|---|
SW-1 | 1 | 2 | 5 | 4 | 8 | 4 | 4 | 6 | 4 |
SW-2 | 8 | 1 | 8 | 9 | 9 | 1 | 1 | 9 | 1 |
SW-3 | 4.5 | 5 | 4 | 6 | 5 | 6 | 6 | 6 | 6 |
SW-4 | 2 | 4 | 2 | 3 | 6 | 7 | 8 | 4 | 7 |
SW-5 | 9 | 8 | 7 | 8 | 2 | 3 | 3 | 7 | 3 |
SW-6 | 7 | 7 | 1 | 2 | 3 | 5 | 5 | 5 | 5 |
SW-7 | 6 | 9 | 3 | 1 | 1 | 9 | 9 | 1 | 9 |
SW-8 | 4.5 | 3 | 6 | 7 | 7 | 2 | 2 | 8 | 2 |
SW-9 | 3 | 6 | 9 | 5 | 4 | 8 | 7 | 3 | 8 |
Morphometric Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|
1.000 | −0.229 | 0.377 | 0.331 | 0.057 | 0.421 | 0.531 | −0.546 | 0.441 | |
−0.229 | 1.000 | −0.399 | −0.710 *** | −0.972 * | −0.527 | −0.607 *** | 0.675 *** | −0.559 | |
0.377 | −0.399 | 1.000 | 0.721 *** | 0.350 | 0.174 | 0.315 | −0.352 | 0.208 | |
0.331 | −0.710 *** | 0.72 *** | 1.000 | 0.738 *** | 0.633 *** | 0.677 *** | −0.709 *** | 0.653 *** | |
0.057 | −0.972 * | 0.350 | 0.738 | 1.000 | 0.569 | 0.615 *** | −0.672 *** | 0.597 | |
0.421 | −0.527 | 0.174 | 0.633 | 0.569 | 1.000 | 0.975 * | −0.958 * | 0.997 * | |
0.531 | −0.607 *** | 0.315 | 0.677 | 0.615 *** | 0.975 * | 1.000 | −0.994 * | 0.983 * | |
−0.546 | 0.675 *** | −0.352 | −0.709 | −0.672 *** | −0.958 * | −0.994 * | 1.000 | −0.972 * | |
0.441 | −0.559 | 0.208 | 0.653 | 0.597 | 0.997* | 0.983 * | −0.972 * | 1.000 |
Morphometric Variables | Initial Eigen Value | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
5.947 | 66.079 | 66.079 | 5.947 | 66.079 | 66.079 | 4.063 | 45.140 | 45.140 | |
1.347 | 14.970 | 81.049 | 1.347 | 14.970 | 81.049 | 2.696 | 29.958 | 75.099 | |
1.113 | 12.365 | 93.414 | 1.113 | 12.365 | 93.414 | 1.648 | 18.315 | 93.414 | |
0.466 | 5.182 | 98.596 | |||||||
0.118 | 1.316 | 99.912 | |||||||
0.004 | 0.049 | 99.961 | |||||||
0.003 | 0.035 | 99.997 | |||||||
0.000 | 0.003 | 100.000 | |||||||
0.000 | 0.000 | 100.000 |
Morphometric Variables | Principal Component | ||
---|---|---|---|
1 | 2 | 3 | |
0.507 | 0.326 | 0.674 *** | |
−0.787 ** | 0.446 | 0.247 | |
0.481 | −0.551 | 0.623 *** | |
0.841 ** | −0.388 | 0.155 | |
0.785 ** | −0.453 | −0.388 | |
0.903 * | 0.372 | −0.140 | |
0.951 * | 0.287 | −0.018 | |
−0.972 * | −0.216 | 0.015 | |
0.922 * | 0.341 | −0.123 |
Morphometric Variables | Principal component | ||
---|---|---|---|
1 | 2 | 3 | |
0.556 | −0.251 | 0.667 *** | |
−0.336 | −0.858 ** | −0.173 | |
−0.019 | 0.377 | 0.883 ** | |
0.390 | 0.668 *** | 0.532 | |
0.338 | 0.925 * | 0.049 | |
0.939 * | 0.297 | 0.055 | |
0.915 * | 0.329 | 0.205 | |
−0.886 ** | −0.389 | −0.236 | |
0.933 * | 0.322 | 0.085 |
Morphometric Variables | |||
---|---|---|---|
1.000 | 0.283 | −0.367 | |
0.283 | 1.000 | −0.600 | |
−0.367 | −0.600 | 1.000 | |
Sum of correlation | 0.917 | 0.683 | 0.033 |
Grand total | 1.633 | 1.633 | 1.633 |
Weight | 0.561 | 0.418 | 0.020 |
Sub-Watershed | Compound Factor | Priority Rank |
---|---|---|
SW-1 | 6.235 | 6 |
SW-2 | 8.276 | 9 |
SW-3 | 4.459 | 4 |
SW-4 | 3.776 | 3 |
SW-5 | 4.827 | 5 |
SW-6 | 1.918 | 1 |
SW-7 | 2.286 | 2 |
SW-8 | 6.337 | 7 |
SW-9 | 6.888 | 8 |
Sr. No. | Priority Level | Priority Category | Sub-Watershed | Percentage of Area |
---|---|---|---|---|
1 | 1.918 to ≤3.161 | Very high | SW-6, SW-7 | 37.81 |
2 | 3.161 to ≤4.403 | High | SW-4 | 9.53 |
3 | 4.403 to ≤5.646 | Medium | SW-3, SW-5 | 17.73 |
4 | 5.646 to ≤6.888 | Low | SW-1, SW-8, SW-9 | 32.52 |
5 | >6.888 | Very low | SW-2 | 2.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, A.; Kumar, A.; Kushwaha, D.P.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Yaseen, Z.M. The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India. Water 2019, 11, 1138. https://doi.org/10.3390/w11061138
Malik A, Kumar A, Kushwaha DP, Kisi O, Salih SQ, Al-Ansari N, Yaseen ZM. The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India. Water. 2019; 11(6):1138. https://doi.org/10.3390/w11061138
Chicago/Turabian StyleMalik, Anurag, Anil Kumar, Daniel Prakash Kushwaha, Ozgur Kisi, Sinan Q. Salih, Nadhir Al-Ansari, and Zaher Mundher Yaseen. 2019. "The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India" Water 11, no. 6: 1138. https://doi.org/10.3390/w11061138
APA StyleMalik, A., Kumar, A., Kushwaha, D. P., Kisi, O., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2019). The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India. Water, 11(6), 1138. https://doi.org/10.3390/w11061138