Hydrological Components Variability under the Impact of Climate Change in a Semi-Arid River Basin
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Collection
3. Methods
3.1. Trend Analysis
3.1.1. Mann–Kendall Trend Test
3.1.2. Hurst’s Index
3.2. Model Set-Up, Calibration and Validation
3.2.1. SWAT Model
3.2.2. Model Calibration and Validation
3.3. Contribution Analysis
3.3.1. Contribution Rate
3.3.2. Scenarios Setting
4. Results
4.1. SWAT Model Simulation
4.2. Annual Variation of Hydrological Components under the Impact of Climate Change
4.3. Seasonal Variation of Climate and Hydrological Components
4.4. Contribution of Climate Change to Hydrological Change
4.4.1. Annual Scale
4.4.2. Seasonal Scale
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, S. IPCC (2007): Climate Change the Physical Science Basis; American Geophysical Union: Washington, DC, USA, 2007. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Scibek, J.; Allen, D.M.; Cannon, A.J.; Whitfield, P.H. Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J. Hydrol. 2007, 333, 165–181. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Jimenez, B.; Miller, K.; Oki, T.; Şen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J. The New Blue and Green Water Paradigm: Breaking New Ground for Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Gerten, D.; Hoff, H.; Bondeau, A.; Lucht, W.; Smith, P.; Zaehle, S. Contemporary “green” water flows: Simulations with a dynamic global vegetation and water balance model. Phys. Chem. Earth Parts A/B/C 2005, 30, 334–338. [Google Scholar] [CrossRef]
- Zang, C.F.; Liu, J.; van der Velde, M.; Kraxner, F. Assessment of spatial and temporal patterns of green and blue water flows in inland river basins in Northwest China. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 3311–3338. [Google Scholar] [CrossRef]
- Chu, J.T.; Xia, J.; Xu, C.-Y.; Singh, V.P. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol. 2010, 99, 149–161. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Liu, J.; Wang, G.; Yan, X.; Wang, X.; Zhang, L. Sensitivity of hydrological variables to climate change in the Haihe River basin, China. Hydrol. Process. 2012, 26, 2294–2306. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Wang, B.; Feng, P. Understanding the Main Causes of Runoff Change by Hydrological Modeling: A Case Study in Luanhe River Basin, North China. Water 2018, 10, 1028. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J. Hydrol. 2016, 540, 257–273. [Google Scholar] [CrossRef]
- Wang, W.; Wei, J.; Shao, Q.; Xing, W.; Yong, B.; Yu, Z.; Jiao, X. Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1117–1133. [Google Scholar] [CrossRef]
- Chen, F.; Li, J. Quantifying drought and water scarcity: A case study in the Luanhe river basin. Nat. Hazards 2016, 81, 1913–1927. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–249. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; C. Griffin: London, UK, 1948. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Co: New York, NY, USA, 1987. [Google Scholar]
- Onyutha, C.; Tabari, H.; Taye, M.T.; Nyandwaro, G.N.; Willems, P. Analyses of rainfall trends in the Nile River Basin. J. Hydro Environ. Res. 2016, 13, 36–51. [Google Scholar] [CrossRef]
- Luo, K.; Tao, F.; Moiwo, J.P.; Xiao, D. Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Sci. Rep. 2016, 6, 33704. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Purcz, P.; Poórová, Z.; Alkhalaf, I.; Hlavatá, H.; Portela, M.M. Monthly Trends of Precipitation in Gauging Stations in Slovakia. Procedia Eng. 2016, 162, 106–111. [Google Scholar] [CrossRef]
- Bari, S.H.; Rahman, M.T.U.; Hoque, M.A.; Hussain, M.M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176–177, 148–158. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. 1951, 116, 776–808. [Google Scholar]
- Rehman, S. Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos Solitons Fractals 2009, 39, 499–509. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Q.; Xia, J.; Bunn, S.E.; Zuo, Q. Changes of flow regimes and precipitation in Huai River Basin in the last half century. Hydrol. Process. 2011, 25, 246–257. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.; Meng, X.; Wang, Y.; Yan, B.; Hong, X. Impact of Climate Variability on Blue and Green Water Flows in the Erhai Lake Basin of Southwest China. Water 2019, 11, 424. [Google Scholar] [CrossRef]
- Mishra, A.; Froebrich, J.; Gassman, P.W. Evaluation of the SWAT Model for Assessing Sediment Control Structures in a Small Watershed in India. Trans. ASABE 2007, 50, 469–477. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, C.; Li, X. Hydrological Impacts of Climate Change Simulated by HIMS Models in the Luanhe River Basin, North China. Water Resour. Manag. 2015, 29, 1365–1384. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Peng, Y.; Zhou, H. Diurnal temperature range variation and its causes in a semiarid region from 1957 to 2006. Int. J. Climatol. 2014, 34, 343–354. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, C.; Liu, M.; Zeng, Y.; Tian, C. Change in pan evaporation over the past 50 years in the arid region of China. Hydrol. Process. 2010, 24, 225–231. [Google Scholar] [CrossRef]
- Kowalczyk, E.A.; Stevens, L.E.; Law, R.M.; Harman, I.N.; Dix, M.; Franklin, C.N.; Wang, Y.-P. The impact of changing the land surface scheme in ACCESS (v1.0/1.1) on the surface climatology. Geosci. Model Dev. 2016, 9, 2771–2791. [Google Scholar] [CrossRef]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Vano, J.A.; Nijssen, B.; Lettenmaier, D.P. Seasonal hydrologic responses to climate change in the Pacific Northwest. Water Resour. Res. 2015, 51, 1959–1976. [Google Scholar] [CrossRef]
- Bu, J.; Lu, C.; Niu, J.; Gao, Y. Attribution of Runoff Reduction in the Juma River Basin to Climate Variation, Direct Human Intervention, and Land Use Change. Water 2018, 10, 1775. [Google Scholar] [CrossRef]
- Lemann, T.; Roth, V.; Zeleke, G. Impact of precipitation and temperature changes on hydrological responses of small-scale catchments in the Ethiopian Highlands. Hydrol. Sci. J. 2017, 62, 270–282. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Xia, J.; Gippel, C.J.; Wang, R.; Zeng, S. Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China. Water Resour. Manag. 2015, 29, 2563–2579. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Wang, Y.; Lu, S.; Chen, X. Drought Propagation Patterns under Naturalized Condition Using Daily Hydrometeorological Data. Adv. Meteorol. 2018, 2018, 2469156. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zhou, S.; Chen, F. Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT. Water Resour. Manag. 2016, 30, 1071–1084. [Google Scholar] [CrossRef]
- Merz, R.; Parajka, J.; Blöschl, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res. 2011, 47, 17. [Google Scholar] [CrossRef]
Scenario | Temperature | Precipitation | Scenario | Temperature | Precipitation |
---|---|---|---|---|---|
M1 | 1960s | 1960s | M9 | 1990s | 1980s |
M2 | 1960s | 1970s | M10 | 1990s | 1990s |
M3 | 1970s | 1960s | M11 | 1990s | 2000s |
M4 | 1970s | 1970s | M12 | 2000s | 1990s |
M5 | 1970s | 1980s | M13 | 2000s | 2000s |
M6 | 1980s | 1970s | M14 | 2000s | 2010s |
M7 | 1980s | 1980s | M15 | 2010s | 2000s |
M8 | 1980s | 1990s | M16 | 2010s | 2010s |
Parameter | Description | Calibration Range | Calibrated Value | |||
---|---|---|---|---|---|---|
Boluonuo | Chengde | Hanjiaying | Xiabancheng | |||
r_CN2 | Initial SCS runoff curve number for moisture condition Ⅱ | (−0.9, 0.9) | 0.24 | 0.27 | −0.7 | 0.02 |
v_ESCO | Soil evaporation compensation factor | (0, 1) | 0.70 | 0.75 | 0.86 | 0.25 |
r_SOL_AWC | Available water capacity of the soil layer (mm H2O/mm soil) | (−0.9, 0.9) | 0.27 | −0.04 | −0.33 | −0.44 |
r_SOL_K | Saturated hydraulic conductivity (mm/h) | (−0.9, 0.9) | −0.64 | −0.89 | 0.17 | 0.13 |
v_ALPHA_BF | Baseflow Alpha factor (1/days) | (0, 1) | 0.55 | 0.42 | 0.85 | 0.06 |
v_REVAPMN | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur (mm H2O) | (0, 500) | 249.66 | 375.99 | 34.73 | 306.98 |
v_CH_K2 | Effective hydraulic conductivity in tributary channel alluvium (mm/h) | (0, 500) | 288.96 | 131.99 | 179.66 | 424.42 |
Meteorological Factors | p-Value | Z | Trend | Hydrological Components | p-Value | Z | Trend | |
---|---|---|---|---|---|---|---|---|
Precipitation | 0.537 | 0.270 | ↑ | Blue water flow | 0.225 | 0.253 | ↑ | |
Temperature | Tmax | 1.63×10−4 | 0.023 | ↑ ** | Green water flow | 0.707 | −0.120 | ↓ |
Tmin | 5.89×10−12 | 0.037 | ↑ ** | Green water storage | 0.477 | −0.060 | ↓ | |
DTR | 0.01 | −0.012 | ↓ ** |
Spring | Summer | Autumn | Winter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | Z | Trend | p-Value | Z | Trend | p-Value | Z | Trend | p-Value | Z | Trend | ||
Precipitation | 0.225 | 0.253 | ↑ | 0.070 | −1.251 | ↓ * | 0.289 | 0.270 | ↑ | 0.318 | 0.031 | ↑ | |
Temperature | Tmax | 0.001 | 0.033 | ↑ ** | 0.003 | 0.022 | ↑ ** | 0.308 | 0.008 | ↑ | 0.010 | 0.029 | ↑ ** |
Tmin | 1.94×10−7 | 0.040 | ↑ ** | 1.06×10−4 | 0.021 | ↑ ** | 1.80×10−7 | 0.032 | ↑ ** | 1.80×10−7 | 0.061 | ↑ ** | |
DTR | 0.126 | −0.010 | ↓ | 0.620 | 0.003 | ↑ | 0.050 | −0.013 | ↓ * | 2.04E-06 | −0.025 | ↓ ** | |
BWF | 0.133 | 0.068 | ↑ | 0.707 | −0.120 | ↓ | 0.639 | −0.148 | ↓ | 0.707 | −0.005 | ↓ | |
GWF | 0.243 | 0.080 | ↑ | 0.477 | −0.060 | ↓ | 0.968 | −0.001 | ↓ | 0.376 | −0.011 | ↓ | |
GWS | 0.049 | 0.105 | ↑ ** | 0.537 | −0.014 | ↓ | 0.355 | 0.040 | ↑ | 0.070 | 0.074 | ↑ * |
Contribution (%) | 1970s | 1980s | 1990s | 2000s | 2010s | |
---|---|---|---|---|---|---|
Blue water flow | Temperature | 2.27 | 10.19 | 11.09 | 24.75 | 14.61 |
Precipitation | 97.73 | 89.81 | 88.91 | 75.25 | 85.39 | |
Green water flow | Temperature | 5.24 | 55.44 | 71.73 | 67.38 | 98.95 |
Precipitation | 94.76 | 44.56 | 28.27 | 32.62 | 1.05 | |
Green water storage | Temperature | 19.45 | 6.67 | 31.11 | 58.38 | 50.85 |
Precipitation | 80.55 | 93.33 | 68.89 | 41.62 | 49.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xu, Y.; Hao, F.; Li, C.; Wang, X. Hydrological Components Variability under the Impact of Climate Change in a Semi-Arid River Basin. Water 2019, 11, 1122. https://doi.org/10.3390/w11061122
Zhang X, Xu Y, Hao F, Li C, Wang X. Hydrological Components Variability under the Impact of Climate Change in a Semi-Arid River Basin. Water. 2019; 11(6):1122. https://doi.org/10.3390/w11061122
Chicago/Turabian StyleZhang, Xuan, Yang Xu, Fanghua Hao, Chong Li, and Xiao Wang. 2019. "Hydrological Components Variability under the Impact of Climate Change in a Semi-Arid River Basin" Water 11, no. 6: 1122. https://doi.org/10.3390/w11061122
APA StyleZhang, X., Xu, Y., Hao, F., Li, C., & Wang, X. (2019). Hydrological Components Variability under the Impact of Climate Change in a Semi-Arid River Basin. Water, 11(6), 1122. https://doi.org/10.3390/w11061122