Storage Stability and Disinfection Performance on Escherichia coli of Electrolyzed Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrolysis Setup
2.3. Electrolysis of Seawater
2.4. Storage Experiment
2.5. Preparation of the Working Culture of E. coli
2.6. Disinfection Experiments
2.7. Electrolysis Setup
3. Theoretical Framework
4. Results and Discussion
4.1. Electrolysis Parameter Selection
- P: Power requirement, watts
- V: Observed voltage, volts
- I: Current applied, ampere
- E: Energy consumption, watt-hour
- P: Power requirement, watts
- V: Observed voltage, volts
- I: Current applied, ampere
- t: Electrolysis time, hours
4.2. Storage Effect on Physicochemical Properties
4.2.1. Evaluation for 30 Days
- Ct: FC concentration at any storage period t, mg/L
- Co: Initial FC concentration, mg/L
- k: Rate of FC decay, day−1
- t: Storage period of ESW, day
4.2.2. Extension of 30-Day Storage Evaluation
4.3. Storage Effect on Disinfection Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nisola, G.M.; Yang, X.; Cho, E.; Han, M.; Lee, C.; Chung, W.-J. Disinfection Performances of Stored Acidic and Neutral Electrolyzed Waters Generated from Brine Solution. J. Environ. Sci. Health Part A 2011, 46, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Shang, Y.; Shi, Z.; Xin, H.; Cao, W. Physicochemical Properties and Bactericidal Efficiency of Neutral and Acidic Electrolyzed Water under Different Storage Conditions. J. Food Eng. 2009, 91, 582–586. [Google Scholar] [CrossRef]
- Diao, H.F.; Li, X.Y.; Gu, J.D.; Shi, H.C.; Xie, Z.M. Electron Microscopic Investigation of the Bactericidal Action of Electrochemical Disinfection in Comparison with Chlorination, Ozonation and Fenton Reaction. Process Biochem. 2004, 39, 1421–1426. [Google Scholar] [CrossRef]
- Jung, Y.; Yoon, Y.; Kwon, M.; Roh, S.; Hwang, T.-M.; Kang, J.-W. Evaluation of Energy Consumption for Effective Seawater Electrolysis Based on the Electrodes and Salinity. Desalin. Water Treat. 2015, 57, 10136–10145. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, C.; Yoon, J. The Effect of Electrode Material on the Generation of Oxidants and Microbial Inactivation in the Electrochemical Disinfection Processes. Water Res. 2009, 43, 895–901. [Google Scholar] [CrossRef]
- Bennett, J.E. Electrodes for Generation of Hydrogen and Oxygen from Seawater. Int. J. Hydrog. Energy 1980, 5, 401–408. [Google Scholar] [CrossRef]
- Hendricks, D. Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Fukuzaki, S. Mechanisms of Actions of Sodium Hypochlorite in Cleaning and Disinfection Processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Jorquera, M.A.; Valencia, G.; Eguchi, M.; Katayose, M.; Riquelme, C. Disinfection of Seawater for Hatchery Aquaculture Systems Using Electrolytic Water Treatment. Aquaculture 2002, 207, 213–224. [Google Scholar] [CrossRef]
- Osafune, T.; Ehara, T.; Ito, T. Electron Microscopic Studies on Bactericidal Effects of Electrolyzed Acidic Water on Bacteria Derived from Kendo Protective Equipment. Environ. Health Prev. Med. 2006, 11, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, V.M.; Gil, M.I.; Pupunat, L.; Allende, A. Cross-Contamination of Escherichia Coli O157: H7 Is Inhibited by Electrolyzed Water Combined with Salt under Dynamic Conditions of Increasing Organic Matter. Food Microbiol. 2015, 46, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Sun, X.H.; Pan, Y.J.; Zhao, Y. Physicochemical Properties and Bactericidal Activities of Acidic Electrolyzed Water Used or Stored at Different Temperatures on Shrimp. Food Res. Int. 2012, 47, 331–336. [Google Scholar] [CrossRef]
- Li, J.; Lin, T.; Lu, Q.; Wang, J.J.; Liao, C.; Pan, Y.; Zhao, Y. Changes in Physicochemical Properties and Bactericidal Efficiency of Acidic Electrolyzed Water Ice and Available Chlorine Decay Kinetics during Storage. LWT Food Sci. Technol. 2014, 59, 43–48. [Google Scholar] [CrossRef]
- Katayose, M.; Yoshida, K.; Achiwa, N.; Eguchi, M. Safety of Electrolyzed Seawater for Use in Aquaculture. Aquaculture 2007, 264, 119–129. [Google Scholar] [CrossRef]
- Graça, A.; Santo, D.; Quintas, C.; Nunes, C. Growth of Escherichia Coli, Salmonella Enterica and Listeria Spp., and Their Inactivation Using Ultraviolet Energy and Electrolyzed Water, on ‘Rocha’ Fresh-Cut Pears. Food Control 2017, 77, 41–49. [Google Scholar] [CrossRef]
- Kasai, H.; Kawana, K.; Labaiden, M.; Namba, K.; Yoshimizu, M. Elimination of Escherichia coli from Oysters Using Electrolyzed Seawater. Aquaculture 2011, 319, 315–318. [Google Scholar] [CrossRef]
- Kasai, H.; Watanabe, K.; Yoshimizu, M. Disinfectant Effects of Hypochlorite Produced by Batch Electrolytic System on Fish Pathogenic Bacteria and Virus. Suisanzoshoku 2001, 49, 237–241. [Google Scholar]
- Oh, B.S.; Oh, S.G.; Hwang, Y.Y.; Yu, H.W.; Kang, J.W.; Kim, I.S. Formation of Hazardous Inorganic By-Products during Electrolysis of Seawater as a Disinfection Process for Desalination. Sci. Total Environ. 2010, 408, 5958–5965. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.S.; Oh, S.-G.; Jung, Y.J.; Hwang, Y.-Y.; Kang, J.-W.; Kim, I.S. Evaluation of a Seawater Electrolysis Process Considering Formation of Free Chlorine and Perchlorate. Desalin. Water Treat. 2010, 18, 245–250. [Google Scholar] [CrossRef]
- Dalynn Biologicals. Available online: http://www.dalynn.com/dyn/ck_assets/files/tech/TM53.pdf (accessed on 16 April 2019).
- Sincero, A.P.; Sincero, G.A. Physical–Chemical Treatment of Water and Wastewater; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Len, S.-V.; Hung, Y.-C.; Chung, D.; Anderson, J.L.; Erickson, M.C.; Morita, K. Effects of Storage Conditions and pH on Chlorine Loss in Electrolyzed Oxidizing (EO) Water. J. Agric. Food Chem. 2002, 50, 209–212. [Google Scholar] [CrossRef] [PubMed]
Container Type | Days | pH | ORP (mV) | Free Chlorine Concentration (mg/L) |
---|---|---|---|---|
Amber Glass | 0 | 4.21 | 1010 | 51.85 |
28 | 6.70 | 853.50 | 12.67 | |
42 | 6.61 | 855 | 5.17 | |
49 | 6.71 | 815.50 | 2.95 | |
High-Density Polyethylene (HDPE) | 0 | 5.74 | 925 | 51.23 |
28 | 7.24 | 797 | 8.77 | |
42 | 7.26 | 788.50 | 2.93 | |
49 | 7.30 | 623 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damalerio, R.G.; Orbecido, A.H.; Uba, M.O.; Cantiller, P.E.L.; Beltran, A.B. Storage Stability and Disinfection Performance on Escherichia coli of Electrolyzed Seawater. Water 2019, 11, 980. https://doi.org/10.3390/w11050980
Damalerio RG, Orbecido AH, Uba MO, Cantiller PEL, Beltran AB. Storage Stability and Disinfection Performance on Escherichia coli of Electrolyzed Seawater. Water. 2019; 11(5):980. https://doi.org/10.3390/w11050980
Chicago/Turabian StyleDamalerio, Regina G., Aileen H. Orbecido, Marigold O. Uba, Patricio Elvin L. Cantiller, and Arnel B. Beltran. 2019. "Storage Stability and Disinfection Performance on Escherichia coli of Electrolyzed Seawater" Water 11, no. 5: 980. https://doi.org/10.3390/w11050980
APA StyleDamalerio, R. G., Orbecido, A. H., Uba, M. O., Cantiller, P. E. L., & Beltran, A. B. (2019). Storage Stability and Disinfection Performance on Escherichia coli of Electrolyzed Seawater. Water, 11(5), 980. https://doi.org/10.3390/w11050980