Next Article in Journal
Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research
Next Article in Special Issue
Built-Up Growth Impacts on Digital Elevation Model and Flood Risk Susceptibility Prediction in Muaeng District, Nakhon Ratchasima (Thailand)
Previous Article in Journal
Integrated Real-Time Flood Forecasting and Inundation Analysis in Small–Medium Streams
Previous Article in Special Issue
Residential Flood Loss Assessment and Risk Mapping from High-Resolution Simulation
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle

The Development and Application of the Urban Flood Risk Assessment Model for Reflecting upon Urban Planning Elements

1
Department of Disaster Prevention, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea
2
Department of Urban Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea
*
Author to whom correspondence should be addressed.
Water 2019, 11(5), 920; https://doi.org/10.3390/w11050920
Received: 15 March 2019 / Revised: 25 April 2019 / Accepted: 25 April 2019 / Published: 1 May 2019
(This article belongs to the Special Issue Recent Advances in the Assessment of Flood Risk in Urban Areas)
  |  
PDF [3801 KB, uploaded 20 May 2019]
  |     |  

Abstract

As a city develops and expands, it is likely confronted with a variety of environmental problems. Although the impact of climate change on people has continuously increased in the past, great numbers of natural disasters in urban areas have become varied in terms of form. Among these urban disasters, urban flooding is the most frequent type, and this study focuses on urban flooding. In cities, the population and major facilities are concentrated, and to examine flooding issues in these urban areas, different levels of flooding risk are classified on 100 m × 100 m geographic grids to maximize the spatial efficiency during the flooding events and to minimize the following flooding damage. In this analysis, vulnerability and exposure tests are adopted to analyze urban flooding risks. The first method is based on land-use planning, and the building-to-land ratio. Using fuzzy approaches, the tests focus on risks. However, the latter method using the HEC-Ras model examines factors such as topology and precipitation volume. By mapping the classification of land-use and flooding, the risk of urban flooding is evaluated by grade-scales: green, yellow, orange, and red zones. There are two key findings and theoretical contributions of this study. First, the areas with a high flood risk are mainly restricted to central commercial areas where the main urban functions are concentrated. Additionally, the development density and urbanization are relatively high in these areas, in addition to the old center of urban areas. In the case of Changwon City, Euichang-gu and Seongsan-gu have increased the flood risk because of the high property value of commercial areas and high building density in these regions. Thus, land-use planning of these districts should be designed to reflect upon the different levels of flood risks, in addition to the preparation of anti-disaster facilities to mitigate flood damages in high flood risk areas. Urban flood risk analysis for individual land use districts would facilitate urban planners and managers to prioritize the areas with a high flood risk and to prepare responding preventive measures for more efficient flood management. View Full-Text
Keywords: climate change; urban flood risk; flood damage; urban disaster; land use climate change; urban flood risk; flood damage; urban disaster; land use
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Park, K.; Lee, M.-H. The Development and Application of the Urban Flood Risk Assessment Model for Reflecting upon Urban Planning Elements. Water 2019, 11, 920.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top