Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Change Point Detection
2.2.2. Indicators of Hydrologic Alteration (IHA)
2.2.3. Degree of Hydrological Alteration
3. Results
3.1. Identification of Change Years and Segmentation of Periods
3.2. Characterization of Water Level Regimes
3.2.1. Magnitude of Monthly Water Level Conditions
3.2.2. Magnitude and Duration of Annual Extreme Water Level Conditions
3.2.3. Timing of Annual Extreme Water Level Conditions
3.2.4. Frequency and Duration of High and Low Pulses
3.2.5. Rate and Frequency of Water Level Condition Changes
3.3. Quantitative Evaluation of Water Level Alteration
4. Discussion
4.1. Impact Factors of Water Level Changes
4.2. Negative Impacts on Ecosystems
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Råman Vinnå, L.; Wüest, A.; Zappa, M.; Fink, G.; Bouffard, D. Tributaries affect the thermal response of lakes to climate change. Hydrol. Earth Syst. Sci. 2018, 22, 31–51. [Google Scholar] [CrossRef]
- De Jonge, C.; Stadnitskaia, A.; Fedotov, A.; Sinninghe Damsté, J.S. Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia). Org. Geochem. 2015, 83, 241–252. [Google Scholar] [CrossRef]
- Loken, L.C.; Small, G.E.; Finlay, J.C.; Sterner, R.W.; Stanley, E.H. Nitrogen cycling in a freshwater estuary. Biogeochemistry 2016, 127, 199–216. [Google Scholar] [CrossRef]
- Nõges, P.; Nõges, T.; Adrian, R.; Weyhenmeyer, G.A. Silicon load and the development of diatoms in three river-lake systems in countries surrounding the Baltic Sea. Hydrobiologia 2008, 599, 67–76. [Google Scholar] [CrossRef]
- Lesack, L.F.W.; Marsh, P. River-to-lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta. Water Resour. Res. 2010, 46, 16W12504. [Google Scholar] [CrossRef]
- Zvezdin, A.O.; Pavlov, D.S.; Kostin, V.V. On the mechanism of orientation and navigation of sockeye salmon underyearlings (Oncorhynchus nerka Walb.) during feeding migration in the inlet-lake-outlet system. Inland Water Biol. 2015, 8, 287–295. [Google Scholar] [CrossRef]
- Brunke, M. Stream typology and lake outlets-a perspective towards validation and assessment from northern Germany (Schleswig-Holstein). Limnologica 2004, 34, 460–478. [Google Scholar] [CrossRef]
- Mitrovic, S.M.; Baldwin, D.S. Allochthonous dissolved organic carbon in river, lake and coastal systems: Transport, function and ecological role. Mar. Freshw. Res. 2016, 67, i–iv. [Google Scholar] [CrossRef]
- Marcarelli, A.M.; Wurtsbaugh, W.A. Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry 2009, 94, 95–110. [Google Scholar] [CrossRef]
- Robertson, D.M.; Rose, W.J. Response in the trophic state of stratified lakes to changes in hydrology and water level: Potential effects of climate change. J. Water Clim. Chang. 2011, 2, 1–18. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Wang, Y.-G.; Werner, A.D.; Xin, P.; Jiang, T.; Barry, D.A. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys. Res. Lett. 2012, 39, L20402. [Google Scholar] [CrossRef]
- Back, L.; Russ, K.; Liu, Z.; Inoue, K.; Zhang, J.; Otto-Bliesner, B. Global hydrological cycle response to rapid and slow global warming. J. Clim. 2013, 26, 8781–8786. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Wang, S.-Y.S.; Gillies, R.R.; Kravitz, B.; Hipps, L.; Rasch, P.J. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun. 2015, 6, 8657. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, J.; Yang, G.; Lu, X.X. Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River? Hydrol. Process. 2014, 28, 150–160. [Google Scholar] [CrossRef]
- Schafer, M.P.; Dietrich, O.; Mbilinyi, B. Streamflow and lake water level changes and their attributed causes in Eastern and Southern Africa: State of the art review. Int. J. Water Resour. Dev. 2016, 32, 853–880. [Google Scholar] [CrossRef]
- Evtimova, V.V.; Donohue, I. Water-level fluctuations regulate the structure and functioning of natural lakes. Freshw. Biol. 2016, 61, 251–264. [Google Scholar] [CrossRef]
- Hofmann, H.; Lorke, A.; Peeters, F. Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 2008, 613, 85–96. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Rothhaupt, K.-O.; Mörtl, M.; Cantonati, M.; G.-Tóth, L.; Fischer, P. Ecological effects of water-level fluctuations in lakes: An urgent issue. Hydrobiologia 2008, 613, 1–4. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Gorla, L.; Perona, P. On quantifying ecologically sustainable flow releases in a diverted river reach. J. Hydrol. 2013, 489, 98–107. [Google Scholar] [CrossRef]
- Papadaki, C.; Soulis, K.; Munoz-Mas, R.; Martinez-Capel, F.; Zogaris, S.; Ntoanidis, L.; Dimitriou, E. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Sci. Total Environ. 2016, 540, 418–428. [Google Scholar] [CrossRef]
- Wang, Y.; Rhoads, B.L.; Wang, D. Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction: Potential ecological implications. Hydrol. Process. 2016, 30, 3949–3966. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Fantin-Cruz, I.; Pedrollo, O.; Girard, P.; Zeilhofer, P.; Hamilton, S.K. Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil. J. Hydrol. 2015, 531, 810–820. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Chen, X. Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations. J. Hydrol. 2015, 529, 711–722. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Chen, Y.D.; Yang, T. Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes. Hydrol. Process. 2009, 23, 1565–1574. [Google Scholar] [CrossRef]
- Xu, G.; Xu, Y.; Luo, X.; Xu, H.; Xu, X.; Hu, C. Temporal and spatial variation of water level in urbanizing plain river network region. Water Sci. Technol. 2014, 69, 2191–2199. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, S.; Huang, G.; Zhang, R. Analysis of long-term water level variation in Dongting Lake, China. Water 2016, 8, 306. [Google Scholar] [CrossRef]
- Yuan, Y.; Zeng, G.; Liang, J.; Huang, L.; Hua, S.; Li, F.; Zhu, Y.; Wu, H.; Liu, J.; He, X.; et al. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, Z.; Opp, C.; Lotz, T.; Jiang, J.; Lai, X. Hydrological drought at Dongting Lake: Its detection, characterization, and challenges associated with Three Gorges Dam in central Yangtze, China. Water Resour. Manag. 2014, 28, 5377–5388. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Xu, C.-Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Dai, L.; Mao, J.; Wang, Y.; Dai, H.; Zhang, P.; Guo, J. Optimal operation of the Three Gorges Reservoir subject to the ecological water level of Dongting Lake. Environ. Earth Sci. 2016, 75, 1111. [Google Scholar] [CrossRef]
- Shang, S. Lake surface area method to define minimum ecological lake level from level-area-storage curves. J. Arid Land 2013, 5, 133–142. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, L.; Wang, X.; Jiang, J.; You, H. Assessment of hydrologic alteration induced by the Three Gorges Dam in Dongting Lake, China. River Res. Appl. 2018, 34, 686–696. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, Q.; Opp, C.; Hennig, T.; Marold, U. Impacts and implications of major changes caused by the Three Gorges Dam in the middle reaches of the Yangtze River, China. Water Resour. Manag. 2012, 26, 3367–3378. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Q.; Wan, R.; Lai, X.; Jiang, X.; Li, L.; Dai, H.; Lei, G.; Chen, J.; Lu, Y. Lake hydrology, water quality and ecology impacts of altered river-lake interactions: Advances in research on the middle Yangtze River. Hydrol. Res. 2016, 47, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Werner, A.D.; Yao, J.; Ye, X. The influence of river-to-lake backflow on the hydrodynamics of a large floodplain lake system (Poyang Lake, China). Hydrol. Process. 2017, 31, 117–132. [Google Scholar] [CrossRef]
- Lai, X.; Liang, Q.; Jiang, J.; Huang, Q. Impoundment effects of the Three-Gorges-Dam on flow regimes in two China’s largest freshwater lakes. Water Resour. Manag. 2014, 28, 5111–5124. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C-Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Lanzante, J.R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol. 1996, 16, 1197–1226. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; van der Zaag, P.; Hagos, E.Y. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river basin, Ethiopia. Hydrol. Earth Syst. Sci. 2017, 21, 2127–2142. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Malekian, A. Homogeneity analysis of streamflow records in arid and semi-arid regions of northwestern Iran. J. Arid Land 2018, 10, 493–506. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J.; Demarée, G.; Salles, C. Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates. J. Geophys. Res.-Atmos. 2006, 111, D22109. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Li, P. Effects of climate change and human activities on runoff and sediment inputs of the largest freshwater lake in China, Poyang Lake. Hydrol. Sci. J. 2017, 62, 2313–2330. [Google Scholar] [CrossRef]
- The Nature Conservancy. Indicators of Hydrologic Alteration Version 7.1 User’s Manual; The Nature Conservancy: Arlington, VA, USA, 2009. [Google Scholar]
- Sarlak, N. Annual streamflow modelling with asymmetric distribution function. Hydrol. Process. 2008, 22, 3403–3409. [Google Scholar] [CrossRef]
- Chen, Y.D.; Yang, T.; Xu, C.-Y.; Zhang, Q.; Chen, X.; Hao, Z.-C. Hydrologic alteration along the Middle and Upper East River (Dongjiang) basin, South China: A visually enhanced mining on the results of RVA method. Stoch. Environ. Res. Risk Assess. 2010, 24, 9–18. [Google Scholar] [CrossRef]
- Shiau, J.-T.; Wu, F.-C. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime. Water Resour. Res. 2007, 43, W06433. [Google Scholar] [CrossRef]
- Duan, W.; Guo, S.; Wang, J.; Liu, D. Impact of cascaded reservoirs group on flow regime in the middle and lower reaches of the Yangtze River. Water 2016, 8, 218. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Shi, P.; Singh, V.P.; Gu, X. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Glob. Planet. Chang. 2018, 160, 61–74. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, H.; Yang, C.; Zhang, L.; Sun, C. Quantitative assessment of hydrological alteration caused by irrigation projects in the Tarim River basin, China. Sci. Rep. 2017, 7, 4291. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, J.T.; Xiang, Y. Human interference in the water discharge of the Changjiang (Yangtze River), China. Hydrol. Sci. J.-J. Sci. Hydrol. 2015, 60, 1770–1782. [Google Scholar] [CrossRef]
- Liu, Y.B.; Wu, G.P.; Zhao, X.S. Recent declines in China’s largest freshwater lake: Trend or regime shift? Environ. Res. Lett. 2013, 8, 9014010. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Zhang, Q.; Feng, S. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. J. Hydrol. 2012, 416, 19–27. [Google Scholar] [CrossRef]
- Du, J.; He, F.; Zhang, Z.; Shi, P. Precipitation change and human impacts on hydrologic variables in Zhengshui River Basin, China. Stoch. Environ. Res. Risk Assess. 2011, 25, 1013–1025. [Google Scholar] [CrossRef]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a changing world. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Alemayehu, T.; Marc, V. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J. Hydrol. 2006, 316, 233–247. [Google Scholar] [CrossRef]
- Li, X.-Y.; Xu, H.-Y.; Sun, Y.-L.; Zhang, D.-S.; Yang, Z.-P. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour. Manag. 2007, 21, 1505–1516. [Google Scholar] [CrossRef]
- Mooij, W.M.; Hulsmann, S.; Domis, L.N.D.; Nolet, B.A.; Bodelier, P.L.E.; Boers, P.C.M.; Pires, L.M.D.; Gons, H.J.; Ibelings, B.W.; Noordhuis, R.; et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 2005, 39, 381–400. [Google Scholar] [CrossRef]
- Motiee, H.; McBean, E. An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior. Hydrol. Res. 2009, 40, 564–579. [Google Scholar] [CrossRef]
- Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens. Environ. 2013, 132, 131–144. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Yao, T.; Kang, S. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin. Sci. Bull. 2013, 58, 3815–3829. [Google Scholar] [CrossRef]
- Gao, J.H.; Jia, J.J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N.; Yang, Y.; Zou, X.Q.; Gao, S.; Qi, S.H.; et al. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Sci. Total Environ. 2014, 481, 542–553. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol. 2009, 370, 163–176. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- De Leeuw, J.; Shankman, D.; Wu, G.; de Boer, W.F.; Burnham, J.; He, Q.; Yesou, H.; Xiao, J. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake, China. Reg. Environ. Chang. 2010, 10, 95–102. [Google Scholar] [CrossRef]
- De Vincenzo, A.; Covelli, C.; Molino, A.J.; Pannone, M.; Ciccaglione, M.; Molino, B. Long-Term Management Policies of Reservoirs: Possible Re-Use of Dredged Sediments for Coastal Nourishment. Water 2019, 11, 1915. [Google Scholar] [CrossRef]
- De Vincenzo, A.; Molino, A.J.; Molino, B.; Scorpio, V. Reservoir rehabilitation: The new methodological approach of Economic Environmental Defence. Int. J. Sediment Res. 2017, 32, 288–294. [Google Scholar] [CrossRef]
- Molino, B.; Viparelli, R.; De Vincenzo, A. Effects of river network works and soil conservation measures on reservoir siltation. Int. J. Sediment Res. 2007, 22, 273–281. [Google Scholar]
- Zhu, L.; Chen, J.; Yuan, J.; Dong, B. Sediment erosion and deposition in two lakes connected with the middle Yangtze River and the impact of Three Gorges Reservoir. Adv. Water Sci. 2014, 25, 348–357. (In Chinese) [Google Scholar] [CrossRef]
- Ye, X.; Li, X.; Zhang, Q. Temporal variation of backflow frequency from the Yangtze River to Poyang Lake and its influencing factors. J. Southwest Univ. (Nat. Sci. Ed.) 2012, 34, 69–75. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Y.-C.E.; Cai, X.; Herricks, E.E. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resour. Res. 2008, 44, W04412. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Yi, Y.J.; Yang, Z.F.; Zhang, S.H. Ecological influence of dam construction and river-lake connectivity on migration fish habitat in the Yangtze River basin, China. In International Conference on Ecological Informatics and Ecosystem Conservation; Yang, Z., Chen, B., Eds.; Elsevier Science Bv: Amsterdam, The Netherlands, 2010; Volume 2, pp. 1942–1954. [Google Scholar]
- Zhang, H.; Li, J.Y.; Wu, J.M.; Wang, C.Y.; Du, H.; Wei, Q.W.; Kang, M. Ecological effects of the first dam on Yangtze main stream and future conservation recommendations: A review of the past 60 years. Appl. Ecol. Environ. Res. 2017, 15, 2081–2097. [Google Scholar] [CrossRef]
- Xie, P. Ecological impacts of Three Gorges Dam on Lakes Dongting and Poyang. Res. Environ. Yangtze Basin 2017, 26, 1607–1618. (In Chinese) [Google Scholar] [CrossRef]
- Cai, Y.J.; Lu, Y.J.; Wu, Z.S.; Chen, Y.W.; Zhang, L.; Lu, Y. Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China. Knowl. Manag. Aquat. Ecosyst. 2014. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, G.; Liang, J.; Chen, J.; Xu, J.; Dai, J.; Sang, L.; Li, X.; Ye, S. Responses of landscape pattern of China’s two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 36–43. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, Y.; Chen, X.; Li, F.; Deng, Z. The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology 2015, 8, 738–746. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Zhang, P.; Zou, Y.; Xie, Y.; Zhang, H.; Liu, X.; Gao, D.; Yi, F. Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China. Sci. Total Environ. 2018, 636, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, H.; Xu, C.-Y.; Guo, S.; Guo, J. Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling. Stoch. Environ. Res. Risk Assess. 2012, 26, 157–176. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Zeng, X.; Gao, C.; Jiang, T. Impacts of climate change on streamflow in the upper Yangtze River basin. Clim. Chang. 2017, 141, 533–546. [Google Scholar] [CrossRef]
Gauge Station | Location | Catchment Area (104 km2) | Average Elevation (m) | Mean Annual Value | |
---|---|---|---|---|---|
Water Level (m) | Discharge (m3/s) | ||||
Chenglingji | Dongting Lake | 26.28 | 35 | 24.76 | 8787.49 |
Hukou | Poyang Lake | 16.22 | 20 | 12.76 | 4726.44 |
IHA Groups | IHA Parameters (No.) | Ecosystem Influences |
---|---|---|
1. Magnitude of monthly water level conditions | Median monthly water level (12) | Habitat availability for aquatic organisms; soil moisture availability for plants; availability and reliability of water for terrestrial animals; availability of food/cover for furbearing mammals; access by predators to nesting sites; influences water temperature, oxygen levels, photosynthesis in water column |
2. Magnitude and duration of annual extreme water level conditions | Annual minimum and maximum 1-, 3-, 7-, 30-, and 90-day means (10) | Balance of competitive, ruderal, and stress-tolerant organisms; creation of sites for plant colonization; structuring of aquatic ecosystems by abiotic vs. biotic factors; structuring of river channel morphology and physical habitat conditions; soil moisture and anaerobic stress in plants; dehydration in animals; volume of nutrient exchanges between rivers and floodplains; duration of stressful conditions such as low oxygen and concentrated chemicals in aquatic environments; distribution of plant communities in lakes, ponds, floodplains; duration of high flows for waste disposal, aeration of spawning beds in channel sediments |
3. Timing of annual extreme water level conditions | Julian date of each annual 1-day minimum and maximum (2) | Compatibility with life cycles of organisms; predictability/avoidability of stress for organisms; access to special habitats during reproduction or to avoid predation; spawning cues for migratory fish; evolution of life history strategies, behavioral mechanisms |
4. Frequency and duration of high and low pulses | Number of low and high pulses with each year (2) Median duration of low and high pulses (2) | Frequency and magnitude of soil moisture stress for plants; frequency and duration of anaerobic stress for plants; availability of floodplain habitats for aquatic organisms; nutrient and organic matter exchanges between river and floodplain; soil mineral availability; access for water birds to feeding, resting, reproduction sites; influences bedload transport, channel sediment textures, and duration of substrate disturbance (high pulses) |
5. Rate and frequency of water level condition changes | Rise and fall rates (2) Number of hydrologic reversals (1) | Drought stress on plants (falling levels); entrapment of organisms on islands, floodplains (rising levels); desiccation stress on low-mobility streamedge (varial zone) organisms |
Methods | Chenglingji | Hukou | ||||
---|---|---|---|---|---|---|
Statistic | p-Value | Change Year | Statistic | p-Value | Change Year | |
Pettitt’s Test | 615 | <0.001 | 1979 | 259 | 0.3795 | 2003 |
Lanzante’s Test | 155 | <0.001 | 1979 | 410 | <0.05 | 2003 |
SNH Test | 20.567 | <0.001 | 1979 | 6.4647 | 0.1647 | 2003 |
BR Test | 2.2247 | <0.001 | 1979 | 1.3294 | 0.1994 | 2003 |
Indicators | Chenglingji | Hukou | ||||||
---|---|---|---|---|---|---|---|---|
Median | Significance | Di (%) | Median | Significance | Di (%) | |||
Pre-Impact | Post-Impact | Pre-Impact | Post-Impact | |||||
Group 1: Magnitude of monthly water level conditions (m) | ||||||||
January | 19.2 | 20.6 | 0.000 | −92 (SA) | 7.8 | 7.8 | 0.861 | 85 (SA) |
February | 19.2 | 20.9 | 0.000 | −76 (HA) | 8.0 | 8.3 | 0.613 | 39 (LA) |
March | 19.6 | 22.3 | 0.000 | −68 (HA) | 9.4 | 10.2 | 0.284 | 62 (HA) |
April | 22.3 | 24.0 | 0.001 | −21 (LA) | 12.3 | 10.9 | 0.033 | −34 (LA) |
May | 26.3 | 26.3 | 0.997 | 42 (MA) | 14.6 | 14.2 | 0.449 | 16 (NA) |
June | 27.3 | 27.7 | 0.351 | 74 (HA) | 15.9 | 15.5 | 0.612 | −31 (LA) |
July | 30.3 | 30.5 | 0.518 | 58 (MA) | 18.1 | 16.3 | 0.018 | −31 (LA) |
August | 28.8 | 29.4 | 0.192 | −29 (LA) | 16.8 | 16.2 | 0.413 | 16 (NA) |
September | 28.0 | 28.7 | 0.315 | −5 (NA) | 16.4 | 16.0 | 0.495 | 16 (NA) |
October | 26.1 | 26.3 | 0.664 | 11 (NA) | 14.5 | 12.8 | 0.015 | −54 (MA) |
November | 23.7 | 23.9 | 0.674 | −13 (NA) | 12.0 | 9.8 | 0.002 | −31 (LA) |
December | 20.6 | 21.4 | 0.000 | −37 (LA) | 9.1 | 8.5 | 0.141 | 39 (LA) |
Group 2: Magnitude and duration of annual extreme water level conditions (m) | ||||||||
1-day minimum | 18.3 | 20.1 | 0.000 | −100 (SA) | 7.2 | 7.3 | 0.426 | 39 (LA) |
3-day minimum | 18.3 | 20.2 | 0.000 | −100 (SA) | 7.2 | 7.4 | 0.405 | 16 (NA) |
7-day minimum | 18.4 | 20.2 | 0.000 | −100 (SA) | 7.2 | 7.4 | 0.429 | 16 (NA) |
30-day minimum | 18.7 | 20.6 | 0.000 | −100 (SA) | 7.4 | 7.8 | 0.200 | 16 (NA) |
90-day minimum | 19.5 | 21.4 | 0.000 | −76 (HA) | 8.5 | 8.8 | 0.460 | 62 (HA) |
1-day maximum | 31.5 | 32.4 | 0.054 | 3 (NA) | 19.5 | 18.0 | 0.035 | 16 (NA) |
3-day maximum | 31.4 | 32.4 | 0.057 | 3 (NA) | 19.5 | 18.0 | 0.035 | 16 (NA) |
7-day maximum | 31.3 | 32.1 | 0.073 | 18 (NA) | 19.5 | 18.0 | 0.030 | 16 (NA) |
30-day maximum | 30.4 | 31.1 | 0.023 | 34 (LA) | 18.6 | 17.4 | 0.044 | 16 (NA) |
90-day maximum | 29.2 | 29.8 | 0.032 | −13 (NA) | 17.3 | 16.5 | 0.182 | −7 (NA) |
Group 3: Timing of annual extreme water level conditions (Julian date) | ||||||||
Date of minimum | 33.0 | 18.0 | 0.088 | −2 (NA) | 27.0 | 3.0 | 0.040 | −54 (MA) |
Date of maximum | 196.5 | 204.5 | 0.068 | 3 (NA) | 195.0 | 209.0 | 0.039 | −60 (HA) |
Group 4: Frequency and duration of high and low pulses | ||||||||
Low pulse count | 2.0 | 0.5 | 0.001 | −28 (LA) | 2.0 | 2.0 | 0.513 | −23 (LA) |
Low pulse duration (day) | 44.0 | 26.0 | 0.259 | −19 (NA) | 53.5 | 34.5 | 0.265 | −75 (HA) |
High pulse count | 2.0 | 2.0 | 0.230 | 1 (NA) | 2.0 | 2.0 | 0.256 | −23 (LA) |
High pulse duration (day) | 27.3 | 41.5 | 0.178 | −37 (LA) | 48.0 | 22.3 | 0.044 | −51 (MA) |
Group 5: Rate and frequency of water level condition changes | ||||||||
Rise rates (m/day) | 0.2 | 0.1 | 0.045 | −9 (NA) | 0.1 | 0.1 | 0.479 | 19 (NA) |
Fall rates (m/day) | −0.1 | −0.1 | 0.112 | 26 (LA) | −0.1 | −0.1 | 0.616 | 1 (NA) |
Number of reversals | 41.5 | 46.0 | 0.017 | −48 (MA) | 45.5 | 38.0 | 0.070 | 4 (NA) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Xu, L.; Feng, W.; Fan, H.; Jiang, J. Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication. Water 2019, 11, 917. https://doi.org/10.3390/w11050917
Cheng J, Xu L, Feng W, Fan H, Jiang J. Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication. Water. 2019; 11(5):917. https://doi.org/10.3390/w11050917
Chicago/Turabian StyleCheng, Junxiang, Ligang Xu, Wenjuan Feng, Hongxiang Fan, and Jiahu Jiang. 2019. "Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication" Water 11, no. 5: 917. https://doi.org/10.3390/w11050917