Next Article in Journal
Adaptation Effort and Performance of Water Management Strategies to Face Climate Change Impacts in Six Representative Basins of Southern Europe
Next Article in Special Issue
Estimating Real-Time Water Area of Dongting Lake Using Water Level Information
Previous Article in Journal
Seasonal and Spatial Variation of Mo Isotope Compositions in Headwater Stream of Xijiang River Draining the Carbonate Terrain, Southwest China
Previous Article in Special Issue
Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle

Construction of Comprehensive Drought Monitoring Model in Jing-Jin-Ji Region Based on Multisource Remote Sensing Data

1,2, 1,*, 1,2 and 1
1
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Water 2019, 11(5), 1077; https://doi.org/10.3390/w11051077
Received: 13 April 2019 / Revised: 20 May 2019 / Accepted: 20 May 2019 / Published: 23 May 2019
  |  
PDF [7207 KB, uploaded 24 May 2019]
  |  

Abstract

Drought is a complex hazard that has more adverse effects on agricultural production and economic development. Studying drought monitoring techniques and assessment methods can improve our ability to respond to natural disasters. Numerous drought indices deriving from meteorological or remote sensing data are focused mainly on monitoring single drought response factors such as soil or vegetation, and the ability to reflect comprehensive information on drought was poor. This study constructed a comprehensive drought-monitoring model considering the drought factors including precipitation, vegetation growth status, and soil moisture balance during the drought process for the Jing-Jin-Ji region, China. The comprehensive drought index of remote sensing (CDIR), a drought indicator deduced by the model, was composed of the vegetation condition index (VCI), the temperature condition index (TCI), and the precipitation condition index (PCI). The PCI was obtained from the Tropical Rainfall Measuring Mission (TRMM) satellite. The VCI and TCI were obtained from a moderate-resolution imaging spectroradiometer (MODIS). In this study, a heavy drought process was accurately explored using the CDIR in the Jing-Jin-Ji region in 2016. Finally, a three-month scales standardized precipitation index (SPI-3), drought affected crop area, and standardized unit yield of wheat were used as validation to evaluate the accuracy of this model. The results showed that the CDIR is closely related to the SPI-3, as well as variations in the drought-affected crop area and standardized unit yield of crop. The correlation coefficient of the CDIR with SPI-3 was between 0.45 and 0.85. The correlation coefficient between the CDIR and drought affected crop was between −0.81 and −0.86. Moreover, the CDIR was positively correlated with the standardized unit yield of crop. It showed that the CDIR index is a decent indicator that can be used for integrated drought monitoring and that it can synthetically reflect meteorological and agricultural drought information. View Full-Text
Keywords: multisource remote sensing data; synthesized drought monitoring model; CDIR; trend analysis; Jing-Jin-Ji region, China multisource remote sensing data; synthesized drought monitoring model; CDIR; trend analysis; Jing-Jin-Ji region, China
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Yu, H.; Li, L.; Liu, Y.; Li, J. Construction of Comprehensive Drought Monitoring Model in Jing-Jin-Ji Region Based on Multisource Remote Sensing Data. Water 2019, 11, 1077.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top