Modelling Nitrate Reduction Strategies from Diffuse Sources in the Po River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: The Po River Basin
2.2. Model Description and Baseline Set-up
2.3. Calibration, Validation and Evaluation
2.3.1. Crop Yields
2.3.2. Streamflow
2.3.3. Nitrate Concentrations
2.4. Scenario Analysis
3. Results
3.1. Analysis of Model Calibration and Validation
3.1.1. Crop Yields
3.1.2. Streamflow and Nitrates
3.1.3. Annual Water and Nitrogen Balance
3.2. Analysis of Scenarios of Agricultural Practices
4. Discussion and Conclusions
Author Contributions
Conflicts of Interest
Appendix A
Crop Code | Crop Name | Management Type |
---|---|---|
HBAR | Barley | Highly intensive |
HMAI | Corn | Highly intensive |
HOOI | Other oil crops | Highly intensive |
HOPU | Other pulses | Highly intensive |
HPOT | Potato | Highly intensive |
HRIC | Rice | Highly intensive |
HSOR | Sorghum Hay | Highly intensive |
HSOY | Soybean | Highly intensive |
HSUB | Sugarbeet | Highly intensive |
HSUN | Sunflower | Highly intensive |
HTEM | Temperate fruits | Highly intensive |
HTRO | Tropical fruits | Highly intensive |
HVEG | Vegetables | Highly intensive |
HWHE | Wheat | Highly intensive |
IMAI | Corn | Irrigated |
IRES | Other crop | Irrigated |
IRIC | Rice | Irrigated |
ISUB | Sugarbeet | Irrigated |
ITEM | Temperate fruits | Irrigated |
ITOB | Tobacco | Irrigated |
ITRO | Tropical fruits | Irrigated |
IVEG | Vegetables | Irrigated |
LMAI | Corn | Low intensive |
LOCE | Other Cereal | Low intensive |
LTEM | Temperate fruits | Low intensive |
LVEG | Vegetables | Low intensive |
STEM | Temperate fruits | Subsistence |
SVEG | Vegetables | Subsistence |
References
- Beusen, A.H.W.; Bouwman, A.F.; Van Beek, L.P.H.; Mogollón, J.M.; Middelburg, J.J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 2016, 13, 2441–2451. [Google Scholar] [CrossRef]
- Epelde, A.M.; Cerro, I.; Sánchez-Pérez, J.M.; Sauvage, S.; Srinivasan, R.; Antigüedad, I. Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrol. Sci. J. 2015, 60, 1–19. [Google Scholar] [CrossRef]
- Liao, L.; Green, C.T.; Bekins, B.A.; Böhlke, J.K. Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (Nitrates Directive); OJ (1991) L375/1; European Commission: Brussels, Belgium, 1991. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and the Council Establishing a Framework for Community Action in the Field of Water Policy (Water Framework Directive); OJ L 327 of 22.12.2000; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- EUROSTAT. Agri-Environmental Indicator—Mineral Fertiliser Consumption-Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_mineral_fertiliser_consumption (accessed on 25 March 2019).
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468–469, 1267–1277. [Google Scholar] [CrossRef]
- Jégo, G.; And Martinez, M.; Antiguedad, I.; Launay, M.; Sanchez-Pérez, J.-M. Justes Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model. Sci. Total Environ. 2008, 394, 207–221. [Google Scholar]
- Cerro, I.; Antigüedad, I.; Srinavasan, R.; Sauvage, S.; Volk, M.; Sanchez-Perez, J.M. Simulating Land Management Options to Reduce Nitrate Pollution in an Agricultural Watershed Dominated by an Alluvial Aquifer. J. Environ. Qual. 2014, 43, 67. [Google Scholar] [CrossRef]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Grizzetti, B.; De Roo, A. Modelling nutrient fluxes into the Mediterranean Sea. J. Hydrol. Reg. Stud. 2019, 22, 100592. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part 1: model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Trans. ASAE 2003, 46, 1553–1566. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G.; Gassman, P.W. The Soil and Water Assessment Tool: historical development, applications, and future research directions invited review series. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Ferrant, S.; Oehler, F.; Durand, P.; Ruiz, L.; Salmon-Monviola, J.; Justes, E.; Dugast, P.; Probst, A.; Probst, J.-L.; Sanchez-Pérez, J.-M. Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. J. Hydrol. 2011, 406, 1–15. [Google Scholar] [CrossRef] [Green Version]
- De Maio, M.; Fiorucci, A.; Offi, M. Risk of groundwater contamination from nitrates in the Po basin (Italy). Water Sci. Technol. Water Supply 2007, 7, 83–92. [Google Scholar] [CrossRef]
- Montanari, A. Hydrology of the Po River: looking for changing patterns in river discharge. Hydrol. Earth Syst. Sci 2012, 16, 3739–3747. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes. Environ. Sci. Pollut. Res. 2019, 26, 2089–2104. [Google Scholar] [CrossRef]
- Palmeri, L.; Bendoricchio, G.; Artioli, Y. Modelling nutrient emissions from river systems and loads to the coastal zone: Po River case study, Italy. Ecol. Modell. 2005, 184, 37–53. [Google Scholar] [CrossRef]
- Salvetti, R.; Azzellino, A.; Vismara, R. Diffuse source apportionment of the Po river eutrophying load to the Adriatic sea: Assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach. Chemosphere 2006, 65, 2168–2177. [Google Scholar] [CrossRef]
- Malagó, A.; Pagliero, L.; Bouraoui, F.; Franchini, M. Comparing calibrated parameter sets of the SWAT model for the Scandinavian and Iberian peninsulas. Hydrol. Sci. J. 2015, 60, 949–967. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef]
- Pagliero, L.; Bouraoui, F.; Willems, P.; Diels, J. Large-Scale Hydrological Simulations Using the Soil Water Assessment Tool, Protocol Development, and Application in the Danube Basin. J. Environ. Qual. 2014, 43, 145. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Liew, M.W.V.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Rathjens, H.; Oppelt, N. SWATgrid: An interface for setting up SWAT in a grid-based discretization scheme. Comput. Geosci. 2012, 45, 161–167. [Google Scholar] [CrossRef]
- LP DAAC Global 30 Arc-Second Elevation Data Set GTOPO30. Land Process Distributed Active Archive Center. Available online: https://www.usgs.gov (accessed on 10 October 2016).
- Arino, O.; Perez, R.J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009 (GlobCover 2009). PANGAEA 2012. [Google Scholar] [CrossRef]
- You, L.; Wood-Sichra, U.; Fritz, S.; Guo, Z.; See, L.; Koo, J. Spatial Production Allocation Model (SPAM) 2005 v2.0. 2014. Available online: http://mapspam.info (accessed on 1 September 2016).
- Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria; ISRIC: Wageningen, The Netherlands; ISSCAS: Nanjing, China; JRC: Brussels, Belgium, 2012.
- Rawls, W.J.; Brakensiek, D.L. Prediction of soil water properties for hydrologic modeling. In Proceedings of the Symposium of Watershed Management in the Eighties, Denver, CO, USA, 30 April–1 May 2016; Jones, E.B., Ward, T.J., Eds.; American Society of Civil Engineers: New York, NY, USA, 1985; pp. 293–299. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D.; et al. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrol. Earth Syst. Sci. 2018, 22, 2117–2133. [Google Scholar] [CrossRef]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Franke, G.R. Stepwise Regression. In Wiley International Encyclopedia of Marketing; John Wiley & Sons, Ltd.: Chichester, UK, 2010; ISBN 9781444316568. [Google Scholar]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M. hydroGOF: Goodness-of-fit Functions for Comparison of Simulated and Observed Hydrological Time SeriesR Package Version 0.3-10. Available online: https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf (accessed on 10 October 2016).
- FAOSTAT. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 26 March 2019).
- Williams, J.R. Chapter 25: The EPIC Model. In: Computer models of watershed hydrology. Water Resour. Publ. 1995, 909–1000. [Google Scholar]
- Yang, M.; Xiao, W.; Zhao, Y.; Li, X.; Huang, Y.; Lu, F.; Hou, B.; Li, B.; Yang, M.; Xiao, W.; et al. Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China. Sustainability 2018, 10, 242. [Google Scholar] [CrossRef]
- Abbaspour, K.C. User Manual for SWAT-CUP, SWAT Calibration, and Uncertainty Analysis Programs; Swiss Federal Institute of Aquatic Science and Technology Eawag: Duebendorf, Switzerland, 2012. [Google Scholar]
- Pagliero, L.; Bouraoui, F.; Diels, J.; Willems, P.; McIntyre, N. Investigating regionalization techniques for large-scale hydrological modelling. J. Hydrol. 2019, 570, 220–235. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Malagó, A.; Vigiak, O.; Bouraoui, F.; Pagliero, L.; Franchini, M. The Hillslope Length Impact on SWAT Streamflow Prediction in Large Basins. J. Environ. Inform. 2018, 32, 82–97. [Google Scholar] [CrossRef]
- Nakagawa, A.; Kutics, A. Classification in Big Image Datasets Using Layered-SOM. In Proceedings of the 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Jaipur, India, 4–7 December 2017; pp. 143–150. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Motsinger, J.; Kalita, P.; Bhattarai, R.; Motsinger, J.; Kalita, P.; Bhattarai, R. Analysis of Best Management Practices Implementation on Water Quality Using the Soil and Water Assessment Tool. Water 2016, 8, 145. [Google Scholar] [CrossRef]
- Meyer, N.; Bergez, J.-E.; Constantin, J.; Justes, E. Cover crops reduce water drainage in temperate climates: A meta-analysis. Agron. Sustain. Dev. 2019, 39, 3. [Google Scholar] [CrossRef]
- Naldi, M.; Pierobon, E.; Tornatore, F.; Viaroli, P. Il ruolo degli eventi di piena nella formazione e distribuzione temporale dei carichi di fosforo e azoto nel fiume Po. Atti XVIII Congr. S.It.E 2005, 24, 59–69. [Google Scholar]
- Yeo, I.-Y.; Lee, S.; Sadeghi, A.M.; Beeson, P.C.; Hively, W.D.; Mccarty, G.W.; Lang, M.W. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model. Hydrol. Earth Syst. Sci 2014, 18, 5239–5253. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B. Rye Cover Crop and Gamagrass Strip Effects on NO Concentration and Load in Tile Drainage. J. Environ. Qual. 2007, 36, 1503. [Google Scholar] [CrossRef]
- Islam, N.; Wallender, W.W.; Mitchell, J.; Wicks, S.; Howitt, R.E. A comprehensive experimental study with mathematical modeling to investigate the affects of cropping practices on water balance variables. Agric. Water Manag. 2006, 82, 129–147. [Google Scholar] [CrossRef]
- Marcillo, G.S.; Miguez, F.E. Corn yield response to winter cover crops: An updated meta-analysis. J. Soil Water Conserv. 2017, 72, 226–239. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ. Earth Sci. 2016, 75, 240. [Google Scholar] [CrossRef]
- Bartoli, M.; Racchetti, E.; Delconte, C.A.; Sacchi, E.; Soana, E.; Laini, A.; Longhi, D.; Viaroli, P. Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks. Biogeosciences 2012, 9, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Spillman, C.M.; Imberger, J.; Hamilton, D.P.; Hipsey, M.R.; Romero, J.R. Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea. J. Mar. Syst. 2007, 68, 167–200. [Google Scholar] [CrossRef]
- Rittenburg, R.A.; Squires, A.L.; Boll, J.; Brooks, E.S.; Easton, Z.M.; Steenhuis, T.S. Agricultural BMP Effectiveness and Dominant Hydrological Flow Paths: Concepts and a Review. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 305–329. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed. Sci. Total Environ. 2017, 607–608, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- De Wit, M.; Behrendt, H.; Bendoricchio, G.; Bleuten, W.; Van Gaans, P. The contribution of agriculture to nutrient pollution in three European rivers, with reference to the European Nitrates Directive. Eur. Water Manag. 2002. Available online: http://www.ewa-online.eu/tl_files/_media/content/documents_pdf/Publications/E-WAter/documents/90_2002_02.pdf (accessed on 13 November 2018).
- Martinez, J.; Burton, C. Manure Management and Treatment: An Overview of the European Situation; International Conference of Animal Hygiene: Mexico, 2003; Available online: https://www.isah-soc.org/userfiles/downloads/proceedings/2003/mainspeakers/15MartinezFrance.pdf (accessed on 13 November 2018).
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.L.; Cacciamani, C. Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef] [PubMed]
Land Use | Area (km2) | Percentage (%) |
---|---|---|
Bare | 804 | 1% |
Fodder crops | 12,848 | 17% |
Forest | 25,133 | 34% |
Irrigated crops | 4337 | 6% |
Managed grassland | 18,943 | 25% |
Rainfed crops | 7707 | 10% |
Shrub | 350 | 0% |
Urban area | 3297 | 4% |
Water | 1171 | 2% |
Total | 74,590 | 100% |
Scenario | Operation Code | Description | Month | Day | Application |
---|---|---|---|---|---|
Baseline | FERT MANN | Amount of N manure fertilizer application (0.99 ORGN) | 10 | 14 | 112.2 kg/ha |
FERT MANP | Amount of P manure fertilizer application (0.99 ORGP) | 10 | 14 | 24.7 kg/ha | |
TILLAGE1 | Disk Chisel (mulch Tiller) with depth of 150 mm and mixing efficiency of 0.55 | 10 | 15 | ||
TILLAGE2 | Harrow 10 Bar Tine 36 Ft with depth of 25 mm and mixing efficiency of 0.2 | 10 | 24 | ||
PLANTING CORN | Beginning of plant growth | 4 | 1 | 1787 HU | |
FERT MINN | Amount of elemental N fertilizer applied to HRU | 4 | 11 | 221.6 kg/ha | |
FERT MINP | Amount of elemental P fertilizer applied to HRU | 4 | 11 | 34.7 kg/ha | |
IRRIGATION 1 | Depth of irrigation water applied on HRU | 4 | 22 | 12.6 mm | |
IRRIGATION 2 | Depth of irrigation water applied on HRU | 5 | 7 | 12.6 mm | |
IRRIGATION 3 | Depth of irrigation water applied on HRU | 5 | 22 | 12.6 mm | |
IRRIGATION 4 | Depth of irrigation water applied on HRU | 6 | 6 | 12.6 mm | |
IRRIGATION 5 | Depth of irrigation water applied on HRU | 6 | 21 | 12.6 mm | |
IRRIGATION 6 | Depth of irrigation water applied on HRU | 7 | 6 | 12.6 mm | |
IRRIGATION 7 | Depth of irrigation water applied on HRU | 7 | 21 | 12.6 mm | |
IRRIGATION 8 | Depth of irrigation water applied on HRU | 8 | 5 | 12.6 mm | |
IRRIGATION 9 | Depth of irrigation water applied on HRU | 8 | 11 | 12.6 mm | |
IRRIGATION 10 | Depth of irrigation water applied on HRU | 8 | 17 | 12.6 mm | |
HARVEST and KILL of CORN | Harvest and kill operation stops the plant growth in the HRU | 9 | 1 | ||
CRP2 | HARVEST and KILL RYE | Harvest and kill operation stops the plant growth in the HRU | 3 | 15 | |
FERT MANN | Amount of N manure fertilizer application (0.99 ORGN) | 3 | 20 | 112.2 kg/ha | |
FERT MANP | Amount of P manure fertilizer application (0.99 ORGP) | 3 | 20 | 24.7 kg/ha | |
PLANTING CORN | Beginning of plant growth | 4 | 1 | 1787 HU | |
FERT MINN | Amount of elemental N fertilizer applied to HRU | 4 | 11 | 199.5 kg/ha | |
FERT MINP | Amount of elemental P fertilizer applied to HRU | 4 | 11 | 34.7 kg/ha | |
IRRIGATION 1 | Depth of irrigation water applied on HRU | 4 | 22 | 12.6 mm | |
IRRIGATION 2 | Depth of irrigation water applied on HRU | 5 | 7 | 12.6 mm | |
IRRIGATION 3 | Depth of irrigation water applied on HRU | 5 | 22 | 12.6 mm | |
IRRIGATION 4 | Depth of irrigation water applied on HRU | 6 | 6 | 12.6 mm | |
IRRIGATION 5 | Depth of irrigation water applied on HRU | 6 | 21 | 12.6 mm | |
IRRIGATION 6 | Depth of irrigation water applied on HRU | 7 | 6 | 12.6 mm | |
IRRIGATION 7 | Depth of irrigation water applied on HRU | 7 | 21 | 12.6 mm | |
IRRIGATION 8 | Depth of irrigation water applied on HRU | 8 | 5 | 12.6 mm | |
IRRIGATION 9 | Depth of irrigation water applied on HRU | 8 | 11 | 12.6 mm | |
IRRIGATION 10 | Depth of irrigation water applied on HRU | 8 | 17 | 12.6 mm | |
HARVEST and KILL of CORN | Harvest and kill operation stops the plant growth in the HRU | 9 | 1 | ||
TILLAGE2 | Harrow 10 Bar Tine 36 Ft with depth of 25 mm and mixing efficiency of 0.2 | 9 | 3 | ||
PLANTING RYE | The initiation of plant growth | 9 | 4 | 800 HU |
ID | Description | Drained Area (km2) | Distance from the Source (km) | # Data Entries for Streamflow (2000–2012) | # Data Entries for N-NO3 (2000–2012) |
---|---|---|---|---|---|
720 | Po at Torino | 7193 | 462 | 60 | |
733 | Po at Pieve del Cairo | 26,467 | 355 | 108 | 33 |
684 | Po at Spessa | 38,468 | 303 | 108 | 55 |
691 | Po at Cremona Castelvetro | 51,337 | 247 | 144 | 63 |
889 | Po at Viadana | 56,350 | 172 | 108 | 62 |
757 | Po at Borgoforte | 63,765 | 147 | 108 | 59 |
763 | Po at Sermide | 70,007 | 101 | 108 | 61 |
902 | Po at Pontelagoscuro | 72,396 | 65 | 144 |
Process | Parameter and Input File | HRUs | Description | Range | Calibrated Value |
---|---|---|---|---|---|
Plant growth | T_Base.crop | Bare, shrub and grassland | Minimum/base temperature for plant growth | 0.12 | 1 |
Fodder crop | Minimum/base temperature for plant growth | 0–12 | 3 | ||
BIO_E.crop | Fodder crop | Radiation use efficiency | 10–90 | 5 | |
Irrigated sugar beet | Radiation use efficiency | 10–90 | 20 | ||
Rice | Radiation use efficiency | 10–90 | 25 | ||
HVSTI.crop | Rice | Harvest index | 0.01–1.25 | 0.54 | |
FRGRW2.crop | Rice | Fraction of the plant growing season corresponding to the 2nd point on the optimal leaf area development curve | 0–1 | 0.51 | |
LAIMX1.crop | Rice | Fraction of the maximum leaf area index corresponding to the 1st point on the optimal leaf area development curve | 0–1 | 0.28 | |
LAIMX2.crop | Rice | Fraction of the maximum leaf area index corresponding to the 2nd point on the optimal leaf area development curve | 0–1 | 0.99 | |
Baseflow generation | ALPHA_BF.gw | all | Baseflow alpha factor | −0.5–0.5 (relative) | 0.045 (relative) 1 |
GW_DELAY.gw | all | Groundwater delay time | −0.5–0.5 (relative) | −0.497 (relative) | |
RCHRG_DP.gw | all | Deep aquifer percolation fraction | −0.5–0.5 (relative) | 0.377 (relative) | |
Nitrogen cycle | HLIFE_NGW.gw | all | Half-life of the nitrate in shallow aquifer | 100–1000 | 1007.5 |
CMN.bsn | all | Rate factor for humus mineralization of active organic nutrients | 0.0001–0.003 | 0.001465 |
Scenario Acronym | Description | #HRU Affected | Area (km2) |
---|---|---|---|
NMIN | Strategic reduction of mineral fertilizer application in each HRU limiting the change in annual crop yield from baseline below 5% | 2208 | 12044 |
MAN170 | Restriction of manure application to maximum 170 kg N/ha/y | 71 | 332 |
MAN250 | Restriction of manure application to maximum 250 kg N/ha/y | 9 | 40 |
CRP1 | Planting rye after harvesting corn and harvesting it before planting corn. | 730 | 5503 |
CRP2 | Strategic reduction of mineral fertilizer application in each HRU with corn (as scenario NMIN) and planting rye as cover crop (as scenario CRP1) after harvesting corn | 730 | 5503 |
CRP3 | Strategic reduction of mineral fertilizer application in each HRU with corn (as scenario NMIN) and planting red clover as cover crop after harvesting corn | 730 | 5503 |
COMB | Combination of scenario NMIN, MAN170 and CRP3 | 2208 | 12044 |
Crop Code | Crop Name | Area (ha) | r |
---|---|---|---|
LMAI | Corn under low intensive management | 3717 | 0.58 |
IMAI | Irrigated corn | 1782 | 0.70 |
HWHE | Wheat under highly intensive management | 1748 | −0.06 |
IRIC | Irrigated rice | 1740 | −0.60 |
Variable | # Monitoring Stations/Data Entries | Simulation Period | PBIAS (%) |
---|---|---|---|
Monthly streamflow | 8/408 | Calibration (2005–2012) | 3.7 |
8/480 | Validation (2000–2004) | −10.8 | |
Monthly N-NO3 concentrations | 6/244 | Calibration (2005–2012) | 12 |
6/89 | Validation (2000–2004) | −4.1 | |
Monthly N-NO3 loads | 6/244 | Calibration (2005–2012) | 14.1 |
6/89 | Validation (2000–2004) | −19.4 | |
6/333 | Evaluation (2000–2012) | 4.3 |
Reference | Model | Period | N-NO3 (ton/y) |
---|---|---|---|
Our study | SWAT | 2000–2012 | 115,000 |
2003–2008 | 93,460 | ||
2003–2007 | 78,032 | ||
Salvetti et al. [20] | QUAL2E/SWAT | 1985–2001 | 107,000 |
Palmeri et al. [19] | MONERIS | 1996–2000 | 123,482 * |
Naldi et al. [55] | - | 2003–2007 | 85,000 |
Malagó et al. [11] | GREEN-Rgrid | 2003–2007 | 86,295 |
Long term average annual load at Sermide | - | 2003–2008 | 93,462 |
Scenarios | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Components | Units of Measures | REF | NMIN | NMAN170 | NMAN250 | CRP1 | CRP2 | CRP3 | COMB | ||||||||
NAPP | Mineral fertilizer and manure application | kg N/ha | 199.28 | 165.23 | (−17%) | 198.28 | (−1%) | 199.18 | (0%) | 199.28 | (0%) | 184.2 | (−8%) | 184.2 | (−8%) | 164.24 | (−18%) |
NMIN | Mineral fertilizer | kg N/ha | 149.07 | 115.03 | (−23%) | 149.07 | (0%) | 149.07 | (0%) | 149.07 | (0%) | 134 | (−10%) | 134 | (−10%) | 115.03 | (−23%) |
NMAN | Manure | kg N/ha | 50.2 | 50.2 | (0%) | 49.2 | (−2%) | 50.1 | (0%) | 50.2 | (0%) | 50.2 | (0%) | 50.2 | (0%) | 49.2 | (−2%) |
NFIX | Nitrogen fixation | kg N/ha | 3.21 | 3.21 | (0%) | 3.23 | (1%) | 3.21 | (0%) | 3.21 | (0%) | 3.21 | (0%) | 21.49 | (569%) | 21.66 | (575%) |
NRAIN | Nitrogen in atmospheric deposition | kg N/ha | 13.4 | 13.4 | (0%) | 13.4 | (0%) | 13.4 | (0%) | 13.4 | (0%) | 13.4 | (0%) | 13.4 | (0%) | 13.4 | (0%) |
NUP 1 | Nitrogen uptake in the soil | kg N/ha | 185.38 | 166.29 | (−10%) | 185.19 | (0%) | 185.37 | (0%) | 209.07 | (13%) | 193.89 | (5%) | 217.28 | (17%) | 210.99 | (14%) |
Nleach | NO3 leached into the aquifer | kg N/ha | 125.4 | 95.47 | (−24%) | 124.71 | (−1%) | 125.33 | (0%) | 109.65 | (−13%) | 98.83 | (−21%) | 97.19 | (−22%) | 78.63 | (−37%) |
Nem | Nitrogen emissions | kg N/ha | 66.51 | 52.64 | (−21%) | 66.25 | (0%) | 66.48 | (0%) | 55.86 | (−16%) | 51.59 | (−22%) | 50.7 | (−24%) | 41.7 | (−37%) |
SRN | Nitrogen transported via surface runoff | kg N/ha | 1.24 | 1.08 | (−13%) | 1.24 | (0%) | 1.24 | (0%) | 1.24 | (0%) | 1.13 | (−9%) | 1.16 | (−6%) | 1.09 | (−12%) |
LFN | Nitrogen transported via lateral flow | kg N/ha | 0.07 | 0.06 | (−14%) | 0.07 | (0%) | 0.07 | (0%) | 0.06 | (−14%) | 0.06 | (−14%) | 0.06 | (−14%) | 0.05 | (−29%) |
ORGN | Organic nitrogen transported with sediment | kg N/ha | 9.57 | 9.2 | (−4%) | 9.55 | (0%) | 9.57 | (0%) | 6.39 | (−33%) | 6.2 | (−35%) | 5.78 | (−40%) | 5.68 | (−41%) |
BFN | NO3 transported via groundwater | kg N/ha | 55.63 | 42.3 | (−24%) | 55.39 | (0%) | 55.6 | (0%) | 48.17 | (−13%) | 44.2 | (−21%) | 43.7 | (−21%) | 34.88 | (−37%) |
SYLD | Sediment yield | ton/y | 6.25 | 6.26 | (0%) | 6.25 | (0%) | 6.25 | (0%) | 3.03 | (−52%) | 3.04 | (−51%) | 2.93 | (−53%) | 2.93 | (−53%) |
YLD | Crop yield | ton/y | 5.97 | 5.78 | (−3%) | 5.96 | (0%) | 5.96 | (0%) | 6.53 | (9%) | 6.39 | (7%) | 7.07 | (18%) | 7.01 | (17%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagó, A.; Bouraoui, F.; Pastori, M.; Gelati, E. Modelling Nitrate Reduction Strategies from Diffuse Sources in the Po River Basin. Water 2019, 11, 1030. https://doi.org/10.3390/w11051030
Malagó A, Bouraoui F, Pastori M, Gelati E. Modelling Nitrate Reduction Strategies from Diffuse Sources in the Po River Basin. Water. 2019; 11(5):1030. https://doi.org/10.3390/w11051030
Chicago/Turabian StyleMalagó, Anna, Fayçal Bouraoui, Marco Pastori, and Emiliano Gelati. 2019. "Modelling Nitrate Reduction Strategies from Diffuse Sources in the Po River Basin" Water 11, no. 5: 1030. https://doi.org/10.3390/w11051030