Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Data
2.2. Water Detection
2.3. Water Depths
2.4. Covariates and Performance of Methodologies
3. Results
3.1. Menindee Lakes
3.2. Oklahoma Reservoirs
3.3. Texas Reservoirs
3.4. Resolution and Slope
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alcamo, J.; Henrichs, T.; Rösch, T. World Water in 2025—Global Modeling and Scenario Analysis for the World Commision on Water for the 21st Century; Report A0002; Center for Environmental systems Research, University of Kassel: Kassel, Germany, 2000. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, H.; Chiew, F.H.S.; Arancibia, J.P.; Zhou, X. Evaluating Regional and Global Hydrological Models against Streamflow and Evapotranspiration Measurements. J. Hydrometeorol. 2016, 17, 995–1010. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; Beek, L.P.H.V.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [PubMed]
- Liuzzo, L.; Noto, L.V.; Arnone, E.; Caracciolo, D.; La Loggia, G. Modifications in Water Resources Availability Under Climate Changes: A Case Study in a Sicilian Basin. Water Resour. Manag. 2015, 29, 1117–1135. [Google Scholar] [CrossRef]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25–34. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Schumann, G.J.P.; Moller, D.K. Microwave remote sensing of flood inundation. Phys. Chem. Earth 2015, 83, 84–95. [Google Scholar] [CrossRef]
- Doble, R.; Crosbie, R.; Peeters, L.; Joehnk, K.; Ticehurst, C. Modelling overbank flood recharge at a continental scale. Hydrol. Earth Syst. Sci. 2014, 18, 1273–1288. [Google Scholar] [CrossRef]
- Siev, S.; Paringit, E.; Yoshimura, C.; Hul, S. Seasonal Changes in the Inundation Area and Water Volume of the Tonle Sap River and Its Floodplain. Hydrology 2016, 3, 33. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation: A review of remote sensing evapotranspiration. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Gupta, R.P. Remote Sensing Geology, 3rd ed.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Islam, A.S.; Bala, S.K.; Haque, M.A. Flood inundation map of Bangladesh using MODIS time-series images: Flood Inundation map of Bangladesh. J. Flood Risk Manag. 2010, 3, 210–222. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Cohen, S.; Brakenridge, G.R.; Kettner, A.; Bates, B.; Nelson, J.; McDonald, R.; Huang, Y.; Munasinghe, D.; Zhang, J. Estimating floodwater depths from flood inundation maps and topography. J. Am. Water Resour. Assoc. 2017, 54, 847–858. [Google Scholar] [CrossRef]
- Scorzini, A.; Radice, A.; Molinari, D. A New Tool to Estimate Inundation Depths by Spatial Interpolation (RAPIDE): Design, Application and Impact on Quantitative Assessment of Flood Damages. Water 2018, 10, 1805. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, 1–24. [Google Scholar] [CrossRef]
- Farhadzadeh, A.; Hashemi, M.R.; Neill, S. Characterizing the Great Lakes hydrokinetic renewable energy resource: Lake Erie wave, surge and seiche characteristics. Energy 2017, 128, 661–675. [Google Scholar] [CrossRef]
- Burrel, M.; Moss, P.; Petrovic, J.; Ali, A. General Purpose Water Accounting Report 2012–2013: Lower Darling Catchment; NSW Department of Primary Industries: Sydney, Australia, 2013.
- Nicol, J.M. Vegetation Dynamics of Menindee Lakes with Reference to the Seed Bank. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2004. [Google Scholar]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift 2010, 19, 135–141. [Google Scholar] [CrossRef]
- Geoscience Australia. Digital Elevation Model (DEM) of Australia Derived from LiDAR 5 Meter Grid; Geoscience Australia: Canberra, Australia, 2015.
- U.S. Geological Survey. USGS National Elevation Dataset (NED)—Metadata. Available online: https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned/resource/f0bd6d40-e4b2-4623-b3f1-43739cd383a8 (accessed on 26 March 2019).
- Solis, R.; Furnans, J.; Kemp, J.; Connell, T.; Weyant, H.; McEwen, T.; Brock, N. Volumetric and Sedimentation Survey of Ray Roberts Lake; Texas Water Development Board: Austin, TX, USA, 2010.
- Solis, R.; Kemp, J.; Connell, T.; Weyant, H.; McEwen, T.; Brock, N. Volumetric and Sedimentation Survey of Lake Tawakoni; Texas Water Development Board: Austin, TX, USA, 2012.
- Solis, R.; Kemp, J.; Connell, T.; Weyant, H.; McEwen, T.; Brock, N. Volumetric and Sedimentation Survey of Lake Fork Reservoir; Texas Water Development Board: Austin, TX, USA, 2012.
- Leber, N.; Holmquist, H.; Iqbal, K.; Duty, J. Volumetric Survey of Hubbard Creek Reservoir; Texas Water Development Board: Austin, TX, USA, 2018.
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Shivers, M. Dam breach study and inundation mapping of eleven dams owned by Oklahoma City, Oklahoma. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2016. [Google Scholar]
- Munasinghe, D.; Cohen, S.; Huang, Y.-F.; Tsang, Y.-P.; Zhang, J.; Fang, Z. Intercomparison of Satellite Remote Sensing-Based Flood Inundation Mapping Techniques. J. Am. Water Resour. Assoc. 2018, 54, 834–846. [Google Scholar] [CrossRef]
- Sawunyama, T.; Senzanje, A.; Mhizha, A. Estimation of small reservoir storage capacities in Limpopo River Basin using geographical information systems (GIS) and remotely sensed surface areas: Case of Mzingwane catchment. Phys. Chem. Earth 2006, 31, 935–943. [Google Scholar] [CrossRef]
- Liebe, J.; Giesen, N.V.D.; Andreini, M. Estimation of small reservoir storage capacities in a semi-arid environment. Phys. Chem. Earth 2005, 30, 448–454. [Google Scholar] [CrossRef]
- Usery, E.L.; Finn, M.P.; Scheidt, D.J.; Ruhl, S.; Beard, T.; Bearden, M. Geospatial data resampling and resolution effects on watershed modeling: A case study using the agricultural non-point source pollution model. J. Geogr. Syst. 2004, 6, 289–306. [Google Scholar] [CrossRef]
- Sørensen, R.; Seibert, J. Effects of DEM resolution on the calculation of topographical indices: TWI and its components. J. Hydrol. 2007, 347, 79–89. [Google Scholar] [CrossRef]
- Cai, X.; Wang, D. Spatial autocorrelation of topographic index in catchments. J. Hydrol. 2006, 328, 581–591. [Google Scholar] [CrossRef]
- Walczak, Z.; Sojka, M.; Wróżyński, R.; Laks, I. Estimation of Polder Retention Capacity Based on ASTER, SRTM and LIDAR DEMs: The Case of Majdany Polder (West Poland). Water 2016, 8, 230. [Google Scholar] [CrossRef]
- Palmieri, A.; Shah, F.; Dinar, A. Economics of reservoir sedimentation and sustainable management of dams. J. Environ. Manag. 2001, 61, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Foerster, S.; Medeiros, P.; Araújo, J.C.D.; Motagh, M.; Waske, B. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data. Sci. Total Environ. 2016, 571, 575–593. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.L.; Richards, J.M. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs; Report 2006-5208; U.S. Geological Survey Scientific Investigations: Denver, CO, USA, 2006; 24p.
- Fuentes, I.; Padarian, J.; Van Ogtrop, F.; Vervoort, W. Spatiotemporal evaluation of inundated areas using MODIS imagery at a catchment scale. J. Hydrol. 2019. [Google Scholar] [CrossRef]
- Busker, T.; Roo, A.D.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.-F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. Discuss. 2019, 23, 669–690. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
Reservoir | Storage Capacity (GL) | Area (m2) | Maximum Depth (m) |
---|---|---|---|
Cawndilla lake | 631.05 | 94,851,864 | 8.7 |
Menindee lake | 629.49 | 163,936,661 | 8.1 |
Pamamaroo lake | 277.73 | 66,861,857 | 7.8 |
Ellsworth lake | 100.60 | 20,691,580 | 16.5 |
Stanley Draper lake | 183.00 | 12,000,000 | 30.0 |
Atoka dam | 152.00 | 23,000,000 | 18.3 |
Fork lake | 785.11 | 108,816,018 | 18.29 |
Ray Roberts lake | 972.59 | 115,926,351 | 32.31 |
Hubbard Creek lake | 392.46 | 63,483,092 | 18.29 |
Tawakoni lake | 1075.22 | 151,049,049 | 19.23 |
Reservoir | Method | p-Value | R2 | RMSE (GL or m3 × 106) | Bias (GL or m3 × 106) |
---|---|---|---|---|---|
Cawndilla | Max | 0.0 | 0.96 | 88.25 | 40.65 |
Median | 0.0 | 0.99 | 85.85 | −53.91 | |
FwDET | 0.0 | 0.98 | 56.27 | 21.75 | |
FwDET_mean | 0.0 | 0.98 | 174.69 | −111.59 | |
IDW | 0.0 | 0.99 | 81.86 | −49.32 | |
Menindee | Max | 0.0 | 0.95 | 254.59 | 143.30 |
Median | 0.0 | 0.99 | 60.96 | −36.92 | |
FwDET | 0.0 | 0.97 | 250.22 | 129.17 | |
FwDET_mean | 0.0 | 0.98 | 164.03 | −105.79 | |
IDW | 0.0 | 0.99 | 59.24 | −36.74 | |
Pamamaroo | Max | 0.0 | 0.80 | 141.79 | 107.47 |
Median | 0.0 | 0.97 | 48.62 | −41.28 | |
FwDET | 0.0 | 0.85 | 113.63 | 93.63 | |
FwDET_mean | 0.0 | 0.89 | 105.31 | −94.98 | |
IDW | 0.0 | 0.96 | 48.72 | −41.18 |
Reservoir | Method | p-Value | R2 | RMSE (GL or m3 × 106) | Bias (GL or m3 × 106) |
---|---|---|---|---|---|
Atoka dam | Max | 0.0 | 0.25 | 150.01 | 133.05 |
Median | 0.0 | 0.93 | 13.83 | −10.99 | |
FwDET | 0.0 | 0.28 | 98.03 | 68.03 | |
FwDET_mean | 0.0 | 0.77 | 68.61 | −67.12 | |
IDW | 0.0 | 0.77 | 24.79 | −21.81 | |
Ellsworth lake | Max | 0.0 | 0.79 | 68.85 | 67.63 |
Median | 0.0 | 0.95 | 11.07 | 9.99 | |
FwDET | 0.0 | 0.81 | 40.77 | 39.12 | |
FwDET_mean | 0.0 | 0.95 | 14.46 | −12.13 | |
IDW | 0.0 | 0.94 | 13.30 | 12.33 | |
Stanley Draper lake | Max | 0.0 | 0.84 | 28.11 | 26.69 |
Median | 0.0 | 0.96 | 5.24 | −4.36 | |
FwDET | 0.0 | 0.79 | 20.46 | 17.85 | |
FwDET_mean | 0.0 | 0.97 | 24.16 | −24.04 | |
IDW | 0.0 | 0.96 | 13.17 | −12.87 |
Reservoir | Method | p-Value | R2 | RMSE (GL or m3 × 106) | Bias (GL or m3 × 106) |
---|---|---|---|---|---|
Hubbard Creek lake | Max | 8.10 × 10−15 | 0.90 | 86.71 | 74.68 |
Median | 1.90 × 10−23 | 0.98 | 22.22 | −12.12 | |
FwDET | 7.80 × 10−20 | 0.96 | 77.15 | 66.78 | |
FwDET_mean | 6.14 × 10−21 | 0.96 | 38.89 | −33.56 | |
IDW | 5.24 × 10−22 | 0.97 | 27.14 | −19.02 | |
Tawakoni lake | Max | 4.19 × 10−15 | 0.63 | 288.35 | 262.16 |
Median | 8.34 × 10−25 | 0.82 | 85.49 | −63.75 | |
FwDET | 1.47 × 10−23 | 0.80 | 263.63 | 219.52 | |
FwDET_mean | 2.43 × 10−31 | 0.89 | 175.90 | −166.11 | |
IDW | 4.21 × 10−30 | 0.88 | 119.07 | −108.63 | |
Ray Roberts lake | Max | 2.51 × 10−47 | 0.90 | 188.12 | 162.02 |
Median | 4.26 × 10−49 | 0.91 | 148.14 | −90.13 | |
FwDET | 3.98 × 10−47 | 0.90 | 172.35 | 145.66 | |
FwDET_mean | 1.59 × 10−42 | 0.87 | 211.32 | −166.59 | |
IDW | 1.15 × 10−54 | 0.93 | 166.04 | −121.30 | |
Fork lake | Max | 1.79 × 10−04 | 0.18 | 140.44 | 183.77 |
Median | 1.39 × 10−11 | 0.48 | 61.29 | −50.81 | |
FwDET | 1.03 × 10−12 | 0.51 | 125.51 | 116.94 | |
FwDET_mean | 2.37 × 10−14 | 0.57 | 126.39 | −122.41 | |
IDW | 3.10 × 10−11 | 0.47 | 81.78 | −74.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, I.; Padarian, J.; van Ogtrop, F.; Vervoort, R.W. Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models. Water 2019, 11, 780. https://doi.org/10.3390/w11040780
Fuentes I, Padarian J, van Ogtrop F, Vervoort RW. Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models. Water. 2019; 11(4):780. https://doi.org/10.3390/w11040780
Chicago/Turabian StyleFuentes, Ignacio, José Padarian, Floris van Ogtrop, and R. Willem Vervoort. 2019. "Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models" Water 11, no. 4: 780. https://doi.org/10.3390/w11040780
APA StyleFuentes, I., Padarian, J., van Ogtrop, F., & Vervoort, R. W. (2019). Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models. Water, 11(4), 780. https://doi.org/10.3390/w11040780