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Abstract: Uncertainty about global change requires alternatives to quantify the availability of water
resources and their dynamics. A methodology based on different satellite imagery and surface
elevation models to estimate surface water volumes would be useful to monitor flood events and
reservoir storages. In this study, reservoirs with associated digital terrain models (DTM) and
continuously monitored volumes were selected. The inundated extent was based on a supervised
classification using surface reflectance in Landsat 5 images. To estimate associated water volumes,
the DTMs were sampled at the perimeter of inundated areas and an inverse distance weighting
interpolation was used to populate the water elevation inside the flooded polygons. The developed
methodology (IDW) was compared against different published methodologies to estimate water
volumes from digital elevation models, which assume either a flat water surface using the maximum
elevation of inundated areas (Max), and a flat water surface using the median elevation of the
perimeter of inundated areas (Median), or a tilted surface, where water elevations are based on an
iterative focal maximum statistic with increasing window sizes (FwDET), and finally a tilted water
surface obtained by replacing the focal maximum statistic from the FwDET methodology with a focal
mean statistic (FwDET_mean). Volume estimates depend strongly on both water detection and the
terrain model. The Max and the FwDET methodologies are highly affected by the water detection step,
and the FwDET_mean methodology leads to lower volume estimates due to the iterative smoothing
of elevations, which also tends to be computationally expensive for big areas. The Median and IDW
methodologies outperform the rest of the methods, and IDW can be used for both reservoir and flood
volume monitoring. Different sources of error can be observed, being systematic errors associated
with the DTM acquisition time and the reported volumes, which for example fail to consider dynamic
sedimentation processes taking place in reservoirs. Resolution effects account for a fraction of errors,
being mainly caused by terrain curvature.
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1. Introduction

Changes in global climate and population result in increased uncertainty in relation to production
and resource exploitation [1–3]. This is particularly relevant for water resources, whose availability
and projections have recently been disputed [4,5]. Given this uncertainty, alternatives to quantify
the availability of water resources must be developed to define water management plans or risk
assessments with higher accuracy [6,7].

Remote sensing is an important tool for studying surface water [8–10]. It has the advantage that
it can be applied in conjunction with other direct measurements, and provides not only snapshots
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of ongoing processes, but can also capture the temporal fluctuation and seasonality of surface water
processes [11,12].

The advantages of remote sensing data compared to other hydrological data lie in the opportunity
to account for the spatial variability of processes [8,13]. Thus, while gauge and meteorological stations
provide data for a specific location, satellite imagery reflects a larger spatial area [14]. Satellites also
regularly pass over the same location, which provides a time series of the images, catching the temporal
variability of some processes [7,15].

Most examples of water detection from space focus on the spatial extent of surface water, but
not necessarily on the volume quantification [15,16]. In the cases where quantity is studied, they are
generally coupled with gauge station measurements, bathymetry, or digital terrain models (DTM),
to estimate water volumes [7,11,17,18]. Several methods have been developed to obtain the depth
of surface water. However, the performance of these methods has been mainly assessed against
field measurements through individual events, rather than against the temporal dynamics of surface
hydrological processes [17]. One example where temporal changes in hydrological processes were
been taken into account only covered short time periods [7].

Flood studies using remote sensing have mostly been limited to short periods or single events due
to challenges in acquiring detailed remote sensing information, which requires high computational
storage capacity due to the efforts involved in pre-processing imagery [19]. However, several
alternatives have recently been developed to cope with these tasks. One of the most important has
been the development of the Google Earth Engine platform, which has multi-petabyte processed and
regularly updated geospatial datasets as well as a wide range of algorithms that facilitate spatial
analysis and remote sensing functionality [20,21].

A second main difficulty is to verify predicted inundation volumes, and this is because of the
lack of a frame of reference [22]. Generally, the solution is to use water levels from gauging stations
and dams or the estimation of the components of the water budget, which usually provide a rough
estimate of the overall water availability [23], but do not necessarily provide space and time verification.
In addition, the scarcity of bathymetric continental data means that estimating surface water volumes
in permanent water bodies is difficult [13]. Moreover, irregularly inundated areas, in which water was
absent when the DTMs were derived, are not consistently surveyed.

While the most common methodology for estimating surface water volumes assumes a flat water
surface [7], this is rarely the case. In flood processes for instance, the flow will be influenced by the
topography of the terrain over which the water is passing. Even in big reservoirs and lakes, water
surfaces are not totally flat. This may be caused by seiches or drain exits [24]. Therefore, assuming
flat water surfaces for water volume estimations may lead to substantial errors in water availability.
The main objective of this study was to assess an automated methodology to estimate surface water
volumes for flood events and reservoirs, taking into account that inundated areas are not necessarily
flat. We then compared this methodology with previously developed alternatives, which use surface
reflectance imagery and elevation models as inputs. The final aim is to improve the calculation of a
flood time series using remote sensing data.

2. Materials and Methods

2.1. Study Areas and Data

The study was carried out at nine locations that have digital terrain models (DTM) and where water
volumes are continuously monitored. The first case study was the Menindee Lakes (Cawndilla, Menindee,
and Pamamaroo), which are located in NSW, Australia (Figure 1). These lakes were modified in 1968
in order to increase the storage capacity and control floods in the Murray Darling basin [25]. A hot and
dry climate on the floodplain depressions of the Lower Darling River characterizes the region where
these lakes are located [26]. These characteristics in combination with regular floods lead to water
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fluctuations in the lakes, suitable for this analysis. Some characteristics of the Menindee lakes are
shown in Table 1.
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The Texas reservoirs were selected based on the available information provided by the Texas Water
Development Board webpage (https://www.twdb.texas.gov/). These lakes are located in northeast
Texas, and also have a subhumid tropical climate (Figure 3). The primary purpose of these reservoirs
is for water supply and conservation, but flood control is also an important purpose, at least for the
Hubbard Creek and Ray Roberts lakes.

In the case of the Menindee lakes, the reference elevation data corresponds to the available Light
Detection And Ranging (LiDAR) DTM at a 5 m resolution [28]. The campaign that obtained the LiDAR
elevations covering the Menindee lakes was carried out in 2009, during a period in which all three
reservoirs were empty, and therefore the observed elevation corresponds to the elevation of the bottom
of the lakes (Figure 4).

For the Oklahoma lakes, bathymetric maps were obtained from the Oklahoma Water Resources
Board with a resolution of 1.5 m (https://www.owrb.ok.gov/), which were resampled at 3 m
and subsequently superimposed on the USGS National Elevation Dataset, which presents a 1/3

arc-second resolution [29] (Figure 5). However, the bathymetric maps were referenced to the specific
normal elevation of each reservoir, instead of being referenced to the water elevation at which they
were surveyed.

In the case of Texas reservoirs, the bathymetric maps were obtained from the Texas Water
Development Board webpage. The bathymetric studies were carried out in different surveys between
2008 and 2018 using multi-frequency sub-bottom profiling depth sounders [30–33]. From elevation
contour lines, bathymetric images were obtained at a 3 m resolution and superimposed on the USGS
National Elevation Dataset (Figure 6).

Landsat 5 surface reflectance imagery was used to detect the surface water. The images were
masked to remove clouds and cloud shadows. Images were used for the entire period of the operation
of the satellite, but a filter was applied such that masked images which contained less than 99% of the
reservoir extent were removed.

The recurrence layer of the Global Surface Water (GSW) Mapping Layers, v.1.0 from the Joint
Research Centre [34] was used as an input for the water detection using Landsat, available as a dataset
in the Google Earth Engine platform.

https://www.twdb.texas.gov/
https://www.owrb.ok.gov/
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Table 1. Design characteristics of the studied reservoirs [30–33,35].

Reservoir Storage Capacity (GL) Area (m2) Maximum Depth (m)

Cawndilla lake 631.05 94,851,864 8.7
Menindee lake 629.49 163,936,661 8.1

Pamamaroo lake 277.73 66,861,857 7.8

Ellsworth lake 100.60 20,691,580 16.5
Stanley Draper lake 183.00 12,000,000 30.0

Atoka dam 152.00 23,000,000 18.3

Fork lake 785.11 108,816,018 18.29
Ray Roberts lake 972.59 115,926,351 32.31

Hubbard Creek lake 392.46 63,483,092 18.29
Tawakoni lake 1075.22 151,049,049 19.23

2.2. Water Detection

Munasinghe et al. [36] argue that the best performance for water detection methods on Landsat
imagery is obtained using supervised classification, rather than using normalized indices. Therefore,
a classification and regression tree analysis (CART) was applied to the reflectance bands of the Landsat
imagery to delineate inundated areas by selecting known surface water and dry land end-members.
This was done by drawing polygons classified as water on several images, previously masked to
remove clouds and cloud shadows. Other polygons were also delineated on dry areas with different
land covers, and classified as dry polygons, which produced surface water classified images (Figure 7).

A total of 188 and 205 polygons in surface water and dry land areas were used to train the classifier,
respectively, using 15 different Landsat 5 images covering Australia and the United States on different
dates. Nevertheless, since the classifier is fed by pixels rather than polygons, the classification was
carried out using 56,438 dry land and 133,194 surface water pixels.

Due to the difficulties caused by topography and dark lithologies, in which mountain shadows
and dark lithologies tend to be classified as water due to the low reflectance, the recurrence layer of the
GSW dataset [34] was also used as an input for the classification. This was appended as a band to the
surface reflectance bands of the Landsat images and passed to the CART classifier.
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color infrared Landsat images.

2.3. Water Depths

Once the inundated areas in the images were delineated, different methods were used to estimate
the water volumes. This involves using the DTM products, including bathymetries, to obtain the depth
of water at the surface, which was subsequently multiplied by the area of inundated pixels.

The first method (Max) assumes that the water surface during floods is flat, based on Siev et al. [7]
who studied the seasonal change in water volumes in a floodplain of almost 5000 km2 in Cambodia.
In it, several polygons with inundated areas are overlain by a DTM, and the maximum elevation of
water in those polygons is assumed to be the elevation of the surface water. Subsequently, the DTM is
subtracted from these elevations in each polygon to get the water depth.

Since the Max methodology may be strongly affected by errors in the surface water classification,
it was complemented by another hydro-flattening methodology, subsequently referred to as “Median”.
It consisted of a line vectorization of the perimeter of inundated areas, which was then buffered
2.5 m at each side. Subsequently, the DTM was clipped by the buffered layer extent and the median
contour DTM elevation was estimated and extrapolated for each inundated area. Finally, the DTM was
subtracted from the median elevation within the perimeter of inundated areas to get the water depths.

The third method (FwDET) was developed by Cohen et al. [17] for flood analysis. It involves the
conversion of inundated areas into polygons to obtain the elevations at the perimeter of polygons.
Subsequently, it applies a focal statistic (focal maximum) in a series of iterations with increasing
window sizes to populate the area inside the polygons with water elevations. The final stage involves
subtracting the water elevations from the original DTM to get the water depths. Negative water depths
are converted to 0, and a final low-pass filter with a kernel of 3 pixels is used to smooth any abrupt
change in the water elevations. An important detail is that the number of iterations corresponds
to the minimum number of iterations needed to completely populate all the inundation polygons.
Additionally, a modification of the FwDET methodology was implemented (subsequently referred to
as FwDET_mean), which replaced the focal maximum statistic of the original methodology with a
focal mean statistic.
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The last method, inverse distance weighting (IDW), also corresponds to a modification of the
FwDET algorithm to improve volume estimates in water reservoirs, because the Cohen et al. [17] study
reports methodological errors in the estimation of reservoir volumes. The new methodology consists
of delineating the perimeter of inundated areas and applies a random sampling of the perimeter
elevations using a buffer of 2.5 m on each side of the perimeter contour, setting the number of sampling
points to 5000. Then, an inverse distance weighting interpolation is applied to the sampled points to
obtain the elevation of the water, which is subsequently subtracted from the DTM to obtain the water
depth (Figure 8).

A filter was applied to all methods, such that polygons with less than six inundated pixels were
removed from the Landsat images.

All preprocessing steps, the water detection, and the different methodologies were implemented
in Google Earth Engine.
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2.4. Covariates and Performance of Methodologies

In the case of Cawndilla lake, an additional 1 m resolution LiDAR DTM was also obtained to
assess how the resolution of the DTM affects the volume estimations. Thus, for the Cawndilla and the
Hubbard lakes (which already have 1 m DTMs), the original resolution was progressively reduced to
3, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 2000, and 3000 m. The analysis of the slope and
its effect on the estimates compared the slope of both reservoirs and the performance of the volume
estimates at the different resolutions.

The final volume estimates were compared against volumes reported by government organizations
from gauging station data. In the case of the Menindee lakes, reported daily volumes were obtained
from the Water NSW webpage (https://realtimedata.waternsw.com.au/), whilst daily volumes from the
Oklahoma and Texas reservoirs were obtained from the USGS platform (https://waterdata.usgs.gov/

nwis). In the case of the USGS datasets, only volumes that were approved for publication were used.
Reported volumes are obtained based on ratings tables generated from initial bathymetric surveys,
which provide the relationship between storage levels and dam volumes.

As a performance evaluation the root mean square error and the bias of the relationship between
observed and estimated volumes were estimated, in addition to the coefficient of determination and a
p-value for the linear regression between both datasets.

3. Results

3.1. Menindee Lakes

As the LiDAR DTM used in the volume estimates of the Menindee lakes was developed when no
water was stored, quantifying water stored in the reservoirs does not require further processing of the

https://realtimedata.waternsw.com.au/
https://waterdata.usgs.gov/nwis
https://waterdata.usgs.gov/nwis
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terrain model. In addition, the DTM can be extrapolated to quantify water volumes associated with
flood events in areas that are dry most of the time. A summary of the performance of the different
methodologies for the Menindee lakes is presented in Table 2.

Table 2. Performance of the different methodologies used to estimate water volumes in the Menindee lakes.

Reservoir Method p-Value R2 RMSE (GL or m3 × 106) Bias (GL or m3 × 106)

Cawndilla

Max 0.0 0.96 88.25 40.65
Median 0.0 0.99 85.85 −53.91
FwDET 0.0 0.98 56.27 21.75

FwDET_mean 0.0 0.98 174.69 −111.59
IDW 0.0 0.99 81.86 −49.32

Menindee

Max 0.0 0.95 254.59 143.30
Median 0.0 0.99 60.96 −36.92
FwDET 0.0 0.97 250.22 129.17

FwDET_mean 0.0 0.98 164.03 −105.79
IDW 0.0 0.99 59.24 −36.74

Pamamaroo

Max 0.0 0.80 141.79 107.47
Median 0.0 0.97 48.62 −41.28
FwDET 0.0 0.85 113.63 93.63

FwDET_mean 0.0 0.89 105.31 −94.98
IDW 0.0 0.96 48.72 −41.18

Except for the Cawndilla lake, the Max method tends to have higher noise compared to the other
methods and tends to overestimate the volumes. This methodology appears more sensitive to the
water detection technique. While other methodologies use the entire perimeter of the surface water,
which offsets errors generated in the delineation of surface water, the maximum elevation methodology,
by picking up only one value of elevation and extrapolating this to the entire water surface, is prone to
errors at the water detection step.

The FwDET methodology leads to high R2 coefficients, but also to high errors in the Menindee
and Pamamaroo lakes. In this case, the bias is positive due to a propagation of the maximum elevations
in the successive iterations of the focal statistic, and therefore propagates the errors caused in the water
detection and by the mismatch between the resolutions of the DTM and the surface reflectance product.
The FwDET_mean, the Median, and the inverse distance weighting interpolation estimates result in a
negative bias, which was higher for the first method (Table 2). When using the FwDET_mean method,
increasing the iterations, which increased the window size in the focal mean statistic, tends to smooth
and diminish the volumes. Therefore, the minimum number of iterations was based on the number
of iterations needed to fill the entire area inside the inundated polygons [17]. However, despite this,
considerable negative bias is introduced. Another disadvantage of this methodology is that the focal
statistic iteration with increasing window sizes is computationally expensive for big areas at high
resolutions, which constrains its use.

Using both the Median and the inverse distance weighting interpolation methodology decreases
the errors and the bias, improving the volume estimates. By assessing the residuals between estimated
and observed values using the IDW method it is clear that the negative bias increases at higher observed
volumes (Figure 9b).

From the analysis, a relationship between inundated areas and volumes can be derived (Figure 9c),
which facilitates further analysis of lake volume by just fitting a regression curve to the data. The shape
of the curves also identifies characteristics of the reservoirs. In this case, the Menindee lakes have an
exponential increase in volumes with respect to the inundated area, which implies small slopes inside
the lakes, but a sharp slope at the perimeter of the lakes, which can also be inferred from the circular
shape of the lakes in Figure 4.

The area/volume relationship indicates a steeper slope for greater inundated areas. The slope is
lower at the Cawndilla lake and is confirmed by the cumulative frequency of slopes from the lakes
(Figure 9d).
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3.2. Oklahoma Reservoirs

The Oklahoma lakes have significantly smaller storage volumes, and as a result have generally
smaller root mean square errors (RMSEs) than the Menindee lakes, despite their lower determination
coefficients (Table 3). However, all reservoirs have a systematic bias, which was always negative
for the FwDET_mean and positive for the Max and FwDET methodologies over the entire range of
observations. In the case of the Median and IDW methods, the bias is both negative and positive, and
as in the Menindee lakes, they have the lower RMSE values.

Table 3. Performance of the different methodologies used to estimate water volumes in Oklahoma reservoirs.

Reservoir Method p-Value R2 RMSE (GL or m3 × 106) Bias (GL or m3 × 106)

Atoka dam

Max 0.0 0.25 150.01 133.05
Median 0.0 0.93 13.83 −10.99
FwDET 0.0 0.28 98.03 68.03

FwDET_mean 0.0 0.77 68.61 −67.12
IDW 0.0 0.77 24.79 −21.81

Ellsworth lake

Max 0.0 0.79 68.85 67.63
Median 0.0 0.95 11.07 9.99
FwDET 0.0 0.81 40.77 39.12

FwDET_mean 0.0 0.95 14.46 −12.13
IDW 0.0 0.94 13.30 12.33

Stanley Draper
lake

Max 0.0 0.84 28.11 26.69
Median 0.0 0.96 5.24 −4.36
FwDET 0.0 0.79 20.46 17.85

FwDET_mean 0.0 0.97 24.16 −24.04
IDW 0.0 0.96 13.17 −12.87
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The bias can be explained by the fact that the different bathymetric maps were referenced to
the mean water level elevation of the reservoir. This choice is generally made because the surveys
usually take several days to complete, and can be finished even in different seasons. However, as the
reference elevation does not correspond to the reservoir level at the moment of the survey, it introduces
consistent errors throughout the entire range of observations. One solution to this problem might be to
use the mean elevation of the surveyed days rather than the mean elevation of the reservoir for the
generation of the bathymetry maps, especially if the variation of water depths during the survey is
lower than the variation in the entire reservoir monitoring period.

Additionally, this bias might be simply removed from the estimates assuming that it is caused
by using the mean level elevation of the reservoir instead of the water level at the moment of the
survey. The residuals in the Atoka reservoir showed an abrupt drop at the higher end of the volume
observations (Figure 10b). This change is related to the change of DTM from the 3 m resolution
bathymetry map to the 1/3 arc-second resolution USGS National Elevation Dataset.

Figure 10. Water volume estimations (a), their residuals (b), and the area–volume relationship
(c) obtained using the inverse distance weighting interpolation methodology on the Oklahoma
reservoirs. The cumulative frequency of slopes in the reservoirs is also presented (d).

Analyzing the area–volume relationship (Figure 10c) suggests quite a different behavior compared
to the Menindee lakes, as the relationship is almost linear. In this case, the shape of the reservoirs also
differs from the circular shape observed in the Menindee lakes, and has less steep slopes at the edges.
The steepest slopes can be observed in the Stanley Draper reservoir and the smoothest bathymetry in
the Ellsworth lake (Figure 10d).

3.3. Texas Reservoirs

The performance of the different methods for the Texas reservoirs is in Table 4. All relationships
are highly correlated with the observed data. In general, both the Max and the FwDET methodologies
had a positive bias compared to the others.

Again, the Median and IDW methodologies outperform the rest of the methodologies. Comparing
the results with the other lakes, it can be observed that there are also increased negative errors for
greater storage volumes (Figure 11b). A greater reservoir storage volume relates to a greater flooded
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area. Since the perimeter of reservoirs in surface reflectance images is often composed of mixed land
surfaces (flooded and dry land), these areas are more susceptible to water detection classification errors.
These errors and the mismatch between the resolution of DTMs and the Landsat images can cause
errors in the elevations at the perimeter of the reservoirs used to fill the water elevations. This results
in bigger errors of volume estimates associated with greater inundated areas.

Table 4. Performance of the different methodologies used to estimate water volumes in Texas reservoirs.

Reservoir Method p-Value R2 RMSE
(GL or m3 × 106)

Bias
(GL or m3 × 106)

Hubbard Creek
lake

Max 8.10 × 10−15 0.90 86.71 74.68
Median 1.90 × 10−23 0.98 22.22 −12.12
FwDET 7.80 × 10−20 0.96 77.15 66.78

FwDET_mean 6.14 × 10−21 0.96 38.89 −33.56
IDW 5.24 × 10−22 0.97 27.14 −19.02

Tawakoni lake

Max 4.19 × 10−15 0.63 288.35 262.16
Median 8.34 × 10−25 0.82 85.49 −63.75
FwDET 1.47 × 10−23 0.80 263.63 219.52

FwDET_mean 2.43 × 10−31 0.89 175.90 −166.11
IDW 4.21 × 10−30 0.88 119.07 −108.63

Ray Roberts
lake

Max 2.51 × 10−47 0.90 188.12 162.02
Median 4.26 × 10−49 0.91 148.14 −90.13
FwDET 3.98 × 10−47 0.90 172.35 145.66

FwDET_mean 1.59 × 10−42 0.87 211.32 −166.59
IDW 1.15 × 10−54 0.93 166.04 −121.30

Fork lake

Max 1.79 × 10−04 0.18 140.44 183.77
Median 1.39 × 10−11 0.48 61.29 −50.81
FwDET 1.03 × 10−12 0.51 125.51 116.94

FwDET_mean 2.37 × 10−14 0.57 126.39 −122.41
IDW 3.10 × 10−11 0.47 81.78 −74.00
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The relationship between inundated areas and reservoir volumes is again fairly good. In this
case the smoothest bathymetry is in the Tawakoni lake (Figure 11d) despite having the highest
storage capacity.

A comparison of water depths for the Hubbard Creek lake is shown in Figure 12 for 15 February 1991.
It can be observed that there is a clear difference between the Max and the FwDET methodologies
and the rest. The Max and the FwDET lead to greater water depths, which may be the result of a
combination of causes: mixed land covers within surface reflectance image pixels, a mismatch between
resolutions of the DTM and the surface reflectance product, and errors in the water detection step.
The best performers, the Median and IDW methodologies, give similar water depth maps.Water 2019, 11, 780 14 of 20 
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Figure 12. Hubbard Creek lake satellite image taken on 15 February 1991 and the different water depth
maps obtained using the different methodologies.

3.4. Resolution and Slope

The decrease in the resolution (greater pixel size) leads to a decrease in the RMSE at very small
pixel sizes. However, this decrease is greatest at a greater pixel resolution in lake Cawndilla (around
300 m; Figure 13a) compared to the Hubbard reservoir (50 m; Figure 13b). After the initial RMSE
decrease, a steady increase in the RMSE is observed in both reservoirs, with a smaller increase for
Hubbard lake. Although the overall RMSE is greater at Cawndilla, if the errors are normalized to
the initial RMSE, the prediction error at Cawndilla lake is around two times the initial error, while
at Hubbard Creek lake errors are about four times greater than the RMSE at the lowest pixel size.
However, determination coefficients decrease faster in the Cawndilla lake, thus showing a faster
deterioration of the precision of the volume prediction with pixel size.

The cumulative slope frequency distribution for the Cawndilla and Hubbard reservoirs is presented
in Figure 13c. The slopes in the Cawndilla lake are much lower than the Hubbard reservoir, which has
a much greater range of slopes. The design characteristics of both reservoirs indicate that the maximum
depth of the Hubbard Creek reservoir is more than two times the depth of Cawndilla lake. This leads
to the slightly different behaviors obtained when analyzing the resolution effect on the performance of
volume estimations.
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4. Discussion

Several alternatives have been developed to deal with problems in estimating surface water
volumes. Sawunyama et al. [37] found a power relationship between areas and volumes in small
reservoirs within a catchment in South Africa, and Liebe et al. [38] estimated volumes of small reservoirs
in Ghana based on their surface areas coupled with bathymetric data. While such estimates can be
useful, extrapolation of the results to different reservoirs should be avoided because, as can be seen in
this study, reservoirs have different area–volume relationships based on their particular bathymetries.

Regarding the pixel size effect on volume estimates, there have been several studies evaluating
the horizontal resolution and its impact on hydrologic processes, with quite different results.
Usery et al. [39], studying topographic indices, such as the topographic wetness index (TWI), which
depends on the slope, concluded that between 3 and 30 m pixel sizes the results were unaffected, while
a further reduction in resolution led to a degradation. In contrast, Sørensen and Seibert [40] found a
considerable degradation in indices, moving from a 5 to a 10 m pixel size, but Cai and Wang [41] did
not report any worsening by diminishing the resolution from 30 to 90 m. With respect to volumetric
studies, Walczak et al. [42] showed that a decrease from 1 to 100 m resolution using LiDAR images led
to approximately a 10% change in polder volumes. Additionally, the same study concluded that a 10%
change in resolution led to little impact in the results. In the current study, the change of resolution in
the flat areas of the terrain using the IDW methodology did not affect the volume estimates for a pixel
size smaller than 300 m. There may even be a slight increase in performance as the resolution decreased
from 1–3 m up to 300 m. Thus, despite the high DTM resolution, the accuracy of the methodology is
constrained by the data used in the water detection, since there is a mismatch in the resolutions of the
surface reflectance and the DTM data. For example, even if a 1 m resolution DTM with high vertical
accuracy is used, the Landsat imagery used in the water detection constrains the water perimeter
to a resolution of 30 m. This affects the volume estimates as elevations can suddenly change in an
interval of 30 m, which is one of the reasons that might explain the increase in the performance
when increasing the pixel size (Figure 13). However, this behavior may also be explained by the
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flat surrounding terrain, and it could be different for steeper topographies surrounding lakes and
reservoirs. Additionally, the 30 m resolution used when delineating the perimeter elevations causes
considerably higher methodological errors in water volume estimates. In particular, this occurs when
using methods that take extreme values in the distribution of elevations at the reservoir perimeters,
such as the Max and FwDET methodologies, which lead to significant positive biases.

One of the difficulties analyzing the effect of the topography and the resolution of images on the
volume estimates is that these cannot be taken into account in isolation because the pixel size affects
the elevation on a pixel basis. In order to understand how slope affects area (and volume) estimates
a diagram is presented (Figure 14). Constant slopes (Figure 14a) will offset gains (blue areas) and
losses (red areas) in inundation area and volume at any pixel scale, independently of the slope angle.
However for curved slopes, changes in the slope over distance (the second derivative of the elevation,
or curvature; Figure 14b) cause biased errors in the volume estimates. In this last case, the increase in
the pixel size and the higher curvature affect the errors in area and volume estimates by increasing the
differences between the gains and losses in inundation area.Water 2019, 11, 780 16 of 20 
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In this study, the curvature of the Cawndilla lake ranges between −0.22 and 0.23 with a standard
deviation of 0.007, while the range and standard deviation of curvatures are significantly higher in the
Hubbard Creek lake (from −1.13 to 1.21 and 0.05, respectively). This may explain the higher impact of
increasing the pixel size on volume estimates at Hubbard Creek lake.

While the Median and the IDW methodologies are clearly superior, there is a clear and consistent
negative bias in both. This systematic error may be a result of the digital terrain models, which were
mostly acquired in the last 10 years, while the reference volumes (for example, calculated from original
bathymetric surveys) date from 1987. In most cases, reservoir volumes reported are related to terrain
conditions prior to the start of the operation of the reservoirs, a moment in which the terrain elevation
was known. In lakes, these are generally linked to the date of the generation of a bathymetry, from
which rating or elevation–area–volume curves are developed and usually associated with a gauge or
limnimeter for continuous monitoring. However, sedimentation processes are continuously taking
place at different rates, affecting the reservoir bathymetries, and this is generally not considered when
monitoring the reservoir volumes [43], which implies an intrinsic error associated with the reference
data. For example, the bathymetry used for the Hubbard Creek reservoir was carried out in 2018.
It complemented a bathymetric survey carried out in 1997. The sedimentation processes between both
surveys result in an estimated loss rate of storage capacity of 0.68 GL y−1, which in 20 years accounts
for a loss of 13.66 GL (Leber et al., 2018). In the case of Fork lake, it has sedimentation rates between
1.46 and 2.32 GL y−1 [32], which results in 46.72 and 74.24 GL of lost capacity since the beginning of
operations. However, these rates can hardly be applied continuously because they represent mean rates
in the period of analysis, and sedimentation can abruptly change depending on rare climatic events.
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In this study, since most of the bathymetries were surveyed in the last 10 years, a projection of
the terrain to estimate past volumes must lead to lower estimates than the reported values (errors),
due to lost reservoir storage capacity through sedimentation. However, the reported values based
on limnimeters or gauges in the reservoirs are also over predicting the reservoir volumes because
these are based on a projection of past conditions of the terrain. This partially explains the systematic
negative errors obtained in the different reservoirs.

A way to deal with changing landscapes and bathymetries is to use terrain models obtained at
higher frequency intervals. While such tasks may be unrealistic at a global scale, some alternatives that
use remote sensing have been applied. For example, Zhang et al. [44], by using TanDEM-X imagery,
were able to obtain bathymetric maps of several lakes in Brazil. Such an approach, if repeatedly carried
out in time, can lead to a better knowledge of sedimentation rates and changes in landscape and water
storage capacities.

Other sources of error, include the accuracy of the DTM sources. For instance, the LiDAR DTM
used specifies a vertical accuracy of at least ±0.3 m and a horizontal accuracy of at least 0.8 m [28].
Even though no accuracies are reported in the bathymetric studies used, the USGS [45] reported
vertical accuracies of 0.2, 0.28, and 0.46 m at the 95 percent confidence interval in the surveyed data,
bathymetric model, and data contour map generated through echo sounder bathymetric studies,
respectively. Therefore, even though the errors in high resolution DTM are low, these still may lead to
large volume errors in big reservoirs.

Since terrain models and surface reflectance data at high spatial resolutions are progressively more
available at global scales, these allow the monitoring of reservoirs and floods. While both the IDW and
the Median methodologies had better performances than the rest, floods occurring in floodplain areas
are usually taking place along river channels, which implies an elevation gradient. This precludes
the use of techniques that assume a flat water surface, such as the Median methodology. Therefore,
for such instances, the alternative IDW methodology might be a better choice for flood water volume
estimates, which might be useful for water management plans and risk management studies. However,
these estimates might have a stronger basis if the temporal resolution and the operation times of
the datasets allow for continuous and long-term monitoring, which might also allow analyzing the
temporal dynamic of such events [46].

While other approaches to study surface water dynamics have been developed by coupling
satellite imagery and altimetry data [47,48], these methods only provide data on fluctuations in volumes
and not total volumes, which constrains their applicability for water management planning.

5. Conclusions

The Max and the FwDET methodologies resulted in considerable errors and high bias in volume
estimation. Both methods were strongly affected by a combination of issues, including: mixed land
covers within surface reflectance image pixels, a mismatch between DTM and surface reflectance
product resolutions, and errors in the water detection step. The FwDET_mean method had an
intermediate performance. Both the Median and IDW methodologies outperformed the rest across the
studied reservoirs. However, a negative bias was systematically observed in the estimates.

Pixel size and the curvature of the terrain were common factors introducing errors that affect area
and volume estimations. Other sources of systematic errors are associated with the terrain models and
the reported volumes stored in reservoirs. These last fail to consider the bathymetric changes occurring
in reservoirs due to sedimentation processes, which can lead to an overestimation of water availability.

Even though some relationships between reservoir areas and volumes have been discussed in the
literature, the extrapolation of such results to different scenarios must be avoided since area–volume
relationships are specific to each reservoir and depend on their specific bathymetries.

Future research using higher resolution imagery or processed datasets for water detection,
including synthetic aperture radar, could be used to improve the results. Moreover, the Surface
Water Ocean Topography mission, projected for 2021, will allow a more thorough understanding of
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surface waters, but different alternatives will still be required to study the dynamics of hydrological
processes and their recurrence since decades of available data will still be required to study long term
hydrologic processes.
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