Climate Change Impact on the Frequency of Hydrometeorological Extremes in the Island of Crete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Drought Indices
2.2.2. Frequency Analysis
3. Results
3.1. Drought Indices
3.1.1. Relative SPI
3.1.2. Relative SRI
3.2. Frequency Analysis
3.2.1. Hydrological Drought Frequency Analysis
3.2.2. Meteorological Drought Frequency Analysis
3.2.3. Extreme Precipitation Frequency Analysis
3.2.4. Extreme Flow Frequency Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Koutroulis, A.G.; Grillakis, M.G.; Daliakopoulos, I.N.; Tsanis, I.K.; Jacob, D. Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete. J. Hydrol. 2016, 532, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Iordanidou, V.; Koutroulis, A.G.; Tsanis, I.K. Mediterranean cyclone characteristics related to precipitation occurrence in Crete, Greece. Nat. Hazards Earth Syst. Sci. 2015, 15, 1807–1819. [Google Scholar] [CrossRef] [Green Version]
- Flocas, H.A.; Tsanis, I.K.; Katavoutas, G.; Kouroutzoglou, J.; Iordanidou, V.; Alexakis, D.D. Climatological aspects of cyclonic tracks associated with flood events in Crete, Greece. Theor. Appl. Climatol. 2017, 130, 1163–1174. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K.; Daliakopoulos, I.N. Seasonality of floods and their hydrometeorologic characteristics in the island of Crete. J. Hydrol. 2010, 394, 90–100. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Mexis, F.-D.K.; Vozinaki, A.-E.K.; Daliakopoulos, I.N.; Tsanis, I.K. Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach. Sensors 2017, 17, 1455. [Google Scholar] [CrossRef] [PubMed]
- Vozinaki, A.-E.K.; Karatzas, G.P.; Sibetheros, I.A.; Varouchakis, E.A. An agricultural flash flood loss estimation methodology: The case study of the Koiliaris basin (Greece) February 2003 flood. Nat. Hazards 2015, 79, 899–920. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Seiradakis, K.D.; Daliakopoulos, I.N.; Grillakis, M.G.; Koutroulis, A.G. Assessment of GeoEye-1 stereo-pair-generated DEM in flood mapping of an ungauged basin. J. Hydroinform. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K. A method for estimating flash flood peak discharge in a poorly gauged basin: Case study for the 13–14 January 1994 flood, Giofyros basin, Crete. J. Hydrol. 2010, 385, 150–164. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Koutroulis, A.G.; Daliakopoulos, I.N.; Jacob, D. Severe climate-induced water shortage and extremes in Crete. Clim. Chang. 2011, 106, 667–677. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the 5th Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- Koutroulis, A.G.; Vrochidou, A.-E.K.; Tsanis, I.K. Spatiotemporal Characteristics of Meteorological Drought for the Island of Crete. J. Hydrometeorol. 2011, 12, 206–226. [Google Scholar] [CrossRef]
- Nikolaidis, N.P.; Bouraoui, F.; Bidoglio, G. Hydrologic and geochemical modeling of a karstic Mediterranean watershed. J. Hydrol. 2013, 477, 129–138. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Weiler, M.; Atzarakis, A. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions. Theor. Appl. Climatol. 2018, 131, 259–270. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Apostolaki, M.G. Estimating Groundwater Withdrawal in Poorly Gauged Agricultural Basins. Water Resour. Manag. 2009, 23, 1097–1123. [Google Scholar] [CrossRef]
- WMO. World Meteorological Organization Standardized Precipitation Index User Guide; WMO-No. 1090; Svoboda, M., Hayes, M., Wood, D., Eds.; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Bandyopadhyay, N.; Bhuiyan, C.; Saha, A.K. Heat waves, temperature extremes and their impacts on monsoon rainfall and meteorological drought in Gujarat, India. Nat. Hazards 2016, 82, 367–388. [Google Scholar] [CrossRef]
- Thomas, T.; Jaiswal, R.K.; Galkate, R.; Nayak, P.C.; Ghosh, N.C. Drought indicators-based integrated assessment of drought vulnerability: A case study of Bundelkhand droughts in central India. Nat. Hazards 2016, 81, 1627–1652. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Dutta, D.; Khanna, M.; Kumar, N.; Bandyopadhyay, S.K. Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices. Nat. Hazards 2015, 77, 733–751. [Google Scholar] [CrossRef]
- Dubrovsky, M.; Svoboda, M.D.; Trnka, M.; Hayes, M.J.; Wilhite, D.A.; Zalud, Z.; Hlavinka, P. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor. Appl. Climatol. 2009, 96, 155–171. [Google Scholar] [CrossRef]
- Duan, J.G.; Bai, Y.; Rivera, D.E.; Meixner, T. Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River. J. Hydrol. 2017, 549, 194–207. [Google Scholar] [CrossRef]
- Shamir, E.; Megdal, S.B.; Carrillo, C.; Castro, C.; Chang, H.I.; Chief, K.; Corkhill, F.E.; Eden, S.; Georgakakos, K.P.; Nelson, K.M.; et al. Climate change and water resources management in the Upper Santa Cruz River, Arizona. J. Hydrol. 2015, 521, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Grasby, S.E. Reconstructing river discharge trends from climate variables and prediction of future trends. J. Hydrol. 2014, 511, 267–278. [Google Scholar] [CrossRef]
- Li, J.; Lei, Y.; Tan, S.; Bell, C.D.; Engel, B.A.; Wang, Y. Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume Series in Both Univariate and Bivariate Domain. Water Resour. Manag. 2018, 32, 4239–4252. [Google Scholar] [CrossRef]
- AQUAMAN. Impacts of Climate Change on Water Resources Management in Crete; Technical Report SAE075/8 AQUAMAN; Innovative Solutions to Climate Change Adaptation and Governance in the Water Management of the Region of Crete Deliverable 2; AQUAMAN: Crete, Greece, 2016; Chapter 4. (In Greek) [Google Scholar]
- Nerantzaki, S.D.; Efstathiou, D.; Giannakis, G.V.; Kritsotakis, M.; Nikolaidis, N.P.; Grillakis, M.G.; Koutroulis, A.; Tsanis, I.K. Climate change impact on water resources management in the island of Crete. Hydrol. Sci. J. 2019. under review. [Google Scholar]
- Naoum, S.; Tsanis, I.K. A Multiple Linear Regression GIS Module using Spatial Variables to Model Orographic Rainfall. J. Hydroinform. 2004, 6, 39–56. [Google Scholar] [CrossRef]
- Vrochidou, A.-E.K.; Tsanis, I.K. Assessing precipitation distribution impacts on droughts on the island of Crete. Nat. Hazards Earth Syst. Sci. 2012, 12, 1159–1171. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K. Multisegment statistical bias correction of daily GCM precipitation output. J. Geophys. Res. Atmos. 2013, 118, 3150–3162. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Koutroulis, A.G.; Daliakopoulos, I.N.; Tsanis, I.K. A method to preserve trends in quantile mapping bias correction of climate modeled temperature. Earth Syst. Dyn. 2017, 8, 889–900. [Google Scholar] [CrossRef]
- Boberg, F.; Christensen, O.B.; Dell’Aquila, A.; Fox Maule, C.; Jacob, D.; Gobiet, A.; Hänsler, A.; Kotova, L.; Mendlik, T.; Pfeifer, S.; et al. D5.1 Report on the Definition of IMPACT2C Mandatory Climate Simulations and Method Applications; Project No. 282746, IMPACT2C; HZG: Geesthacht, Germany, 2015. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Vozinaki, A.-E.K.; Tapoglou, E.; Tsanis, I.K. Hydrometeorological impact of climate change in two Mediterranean basins. Int. J. River Basin Manag. 2018, 16, 245–257. [Google Scholar] [CrossRef]
- Malagò, A.; Efstathiou, D.; Bouraoui, F.; Nikolaidis, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete. J. Hydrol. 2016, 540, 64–81. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought Monitoring with Multiple Time Scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; American Meteorological Society: Boston, MA, USA, 1995; pp. 233–236. [Google Scholar]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Climatology Report Number 97-2; Colorado State University: Fort Collins, CO, USA, 1997. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Ming, B.; Guo, Y.; Tao, H.; Liu, G.; Li, S.; Wang, P. SPEIPM-based research on drought impact on maize yield in North China Plain. J. Integr. Agric. 2015, 14, 660–669. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Singh, V.P.; Xia, Y.; Ouyang, W.; Shen, X. A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Adv. Water Resour. 2016, 92, 240–247. [Google Scholar] [CrossRef]
- Erhardt, T.M.; Czado, C. Standardized Drought Indices: A Novel Uni- and Multivariate Approach. 2015. Available online: https://arxiv.org/pdf/1508.06476.pdf (accessed on 20 March 2019).
- Bezak, N.; Brilly, M.; Šraj, M. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrol. Sci. J. 2014, 59, 959–977. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T.; Maidment, D.; Mays, L.W. Applied Hydrology; McGraw Hill: New York, NY, USA, 1988. [Google Scholar]
- Kite, G.W. Frequency and Risk Analyses in Hydrology; Water Resources Publications: Fort Collins, CO, USA, 1977. [Google Scholar]
RCM | Driving GCM | RCP |
---|---|---|
CSC-REMO | MPI-ESM-LR-r1 | 2.6 |
4.5 | ||
8.5 | ||
SMHI-RCA4 | EC-EARTH-r12 | 2.6 |
4.5 | ||
8.5 | ||
SMHI-RCA4 | HadGEM2-ES-r1 | 4.5 |
8.5 | ||
KNMI-RACMO22E | EC-EARTH-r1 | 4.5 |
8.5 | ||
IPSL-INERIS-WRF331F | IPSL-CM5A-MR-r1 | 4.5 |
Index Value | Characterization |
---|---|
2.0+ | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2 and less | Extremely dry |
RCP Category | Climate Model | Months per Year with SPI 12 < −1.5 | |||
---|---|---|---|---|---|
GCM | RCM | 1985–2010 | 2025–2050 | 2075–2100 | |
RCP 2.6 | MPI-ESM-LR-r1 | CSC-REMO | 0.58 | 1.15 | 1.36 |
EC-EARTH-r12 | SMHI-RCA4 | 0.7 | 1.45 | 1.23 | |
RCP 4.5 | MPI-ESM-LR-r1 | CSC-REMO | 0.47 | 1.92 | 1.78 |
IPSL-CM5A-MR-r1 | IPSL-INERIS-WRF331F | 1.16 | 1.2 | 2.64 | |
HadGEM2-ES-r1 | SMHI-RCA4 | 0.82 | 0.81 | 0.91 | |
EC-EARTH-r1 | KNMI-RACMO22E | 0.49 | 1.03 | 1.59 | |
EC-EARTH-r12 | SMHI-RCA4 | 0.79 | 2.01 | 1.44 | |
RCP 8.5 | MPI-ESM-LR-r1 | CSC-REMO | 0.36 | 1.39 | 3.92 |
HadGEM2-ES-r1 | SMHI-RCA4 | 0.62 | 1.19 | 2.54 | |
EC-EARTH-r1 | KNMI-RACMO22E | 0.09 | 1.15 | 2.13 | |
EC-EARTH-r12 | SMHI-RCA4 | 0.95 | 1.59 | 4.81 |
RCP Category | Climate Model | Months per Year with SRI 12 < −1.5 | |||
---|---|---|---|---|---|
GCM | RCM | 1985–2010 | 2025–2050 | 2075–2100 | |
RCP 2.6 | MPI-ESM-LR-r1 | CSC-REMO | 0.18 | 1.21 | 1.14 |
EC-EARTH-r12 | SMHI-RCA4 | 0.58 | 1.42 | 1.33 | |
RCP 4.5 | MPI-ESM-LR-r1 | CSC-REMO | 0.12 | 1.71 | 1.73 |
IPSL-CM5A-MR-r1 | IPSL-INERIS-WRF331F | 1.03 | 1.45 | 3.17 | |
HadGEM2-ES-r1 | SMHI-RCA4 | 0.6 | 0.57 | 1.19 | |
EC-EARTH-r1 | KNMI-RACMO22E | 0.62 | 0.8 | 1.39 | |
EC-EARTH-r12 | SMHI-RCA4 | 0.56 | 2.1 | 1.47 | |
RCP 8.5 | MPI-ESM-LR-r1 | CSC-REMO | 0.32 | 1.7 | 3.99 |
HadGEM2-ES-r1 | SMHI-RCA4 | 0.94 | 1.26 | 2.69 | |
EC-EARTH-r1 | KNMI-RACMO22E | 0.21 | 1.12 | 1.61 | |
EC-EARTH-r12 | SMHI-RCA4 | 0.79 | 1.41 | 4.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapoglou, E.; Vozinaki, A.E.; Tsanis, I. Climate Change Impact on the Frequency of Hydrometeorological Extremes in the Island of Crete. Water 2019, 11, 587. https://doi.org/10.3390/w11030587
Tapoglou E, Vozinaki AE, Tsanis I. Climate Change Impact on the Frequency of Hydrometeorological Extremes in the Island of Crete. Water. 2019; 11(3):587. https://doi.org/10.3390/w11030587
Chicago/Turabian StyleTapoglou, Evdokia, Anthi Eirini Vozinaki, and Ioannis Tsanis. 2019. "Climate Change Impact on the Frequency of Hydrometeorological Extremes in the Island of Crete" Water 11, no. 3: 587. https://doi.org/10.3390/w11030587