Use of Nanoparticles for the Disinfection of Desalinated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NPs
2.2. Characterization of NPs
2.3. Characterization of Tested Water
2.4. Antibacterial Assessment
2.5. Disinfection Kinetics
3. Results and Discussion
3.1. Effects of NPs Concentration and Contact Time
3.2. Kinetic Modeling
3.3. Effects of Type of NP
3.4. Effects of Type of Bacteria
3.5. Effects of Type of Water
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization (WHO); United Nations Children’s Fund (UNICEF): Geneva, Switzerland, 2017. [Google Scholar]
- Chowdhury, S.; Champagne, P.; McLellan, P.J. Uncertainty characterization approaches for risk assessment of DBPs in drinking water: A review. J. Environ. Manag. 2009, 90, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Hebert, A.; Forestier, D.; Lenes, D.; Benanou, D.; Jacob, S.; Arfi, C.; Lambolez, L.; Levi, Y. Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res. 2010, 44, 3147–3165. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Perales-Perez, O.J.; Hwang, S.; Román, F. Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci. Total Environ. 2014, 466–467, 1047–1059. [Google Scholar]
- Ram, M.K.; Andreescu, S.; Ding, H. Nanotechnology for Environmental Decontamination; McGraw-Hill Professional: New York, NY, USA, 2011; ISBN 0-07-170279-2. [Google Scholar]
- Bao, Q.; Zhang, D.; Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 2011, 360, 463–470. [Google Scholar] [CrossRef]
- Biswas, P.; Bandyopadhyaya, R. Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration. Water Res. 2016, 100, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Dimapilis, E.A.S.; Hsu, C.-S.; Mendoza, R.M.O.; Lu, M.-C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef]
- Park, S.; Ko, Y.-S.; Jung, H.; Lee, C.; Woo, K.; Ko, G. Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci. Total Environ. 2018, 625, 477–485. [Google Scholar] [CrossRef]
- Quang, D.V.; Sarawade, P.B.; Jeon, S.J.; Kim, S.H.; Kim, J.-K.; Chai, Y.G.; Kim, H.T. Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 2013, 266, 280–287. [Google Scholar] [CrossRef]
- Reddy, K.H.P.; Shashikala, V.; Anand, N.; Sandeep, C.; Raju, B.D.; Rao, K.S.R. A study on control of microorganisms in drinking water using Ag-Cu/C catalysts. Open Catal. J. 2011, 4, 47–53. [Google Scholar] [CrossRef]
- Elshorbagy, W.; Abdulkarim, M. Chlorination byproducts in drinking water produced from thermal desalination in United Arab Emirates. Environ. Monit. Assess. 2006, 123, 313–331. [Google Scholar] [CrossRef]
- Farre, M.J.; Knight, N. Assessment of Regulated and Emerging Disinfection By-Products in South East Queensland Drinking Water; Technical Report No. 90; Urban Water Security Research Alliance: Australia, 2012. [Google Scholar]
- Latif, N.A.; Al-Awadi, F.M.; Colenutt, B.A. Trihalomethanes (THMs) formation in multi-stage flash (MSF) distillation plants. Desalination 1989, 74, 205–226. [Google Scholar] [CrossRef]
- Tawabini, B.; Khararjian, H.; Fayad, N. Trihalomethanes (THMs) formation in a distillation process. Desalination 1987, 66, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Ostiguy, C.; Soucy, B.; Lapointe, G.; Woods, C.; Ménard, L.; Trottier, M. Health Effects of Nanoparticles, 2nd ed.; Institut de recherche Robert-Sauvé en santé et en sécurité du travail IRSST: Montréal, QC, Canada, 2008. [Google Scholar]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [PubMed]
- Das, M.R.; Sarma, R.K.; Saikia, R.; Kale, V.S.; Shelke, M.V.; Sengupta, P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B Biointerfaces 2011, 83, 16–22. [Google Scholar] [CrossRef]
- Park, S.-J.; Jang, Y.-S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J. Colloid Interface Sci. 2003, 261, 238–243. [Google Scholar] [CrossRef]
- Srinivasan, N.R.; Shankar, P.A.; Bandyopadhyaya, R. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon 2013, 57, 1–10. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Liu, J.-H. A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 2827–2833. [Google Scholar] [CrossRef]
- De Kwaadsteniet, M.; Botes, M.; Cloete, T.E. Application of nanotechnology in antimicrobial coatings in the water industry. Nano 2011, 06, 395–407. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF): Washington, DC, USA, 2017. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Silver in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- WHO. Zinc in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Cho, M.; Chung, H.; Yoon, J. Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl. Environ. Microbiol. 2003, 69, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.Y.; Kim, J.-M.; Lee, J.E.; Ko, G. Characterization of ozone disinfection of murine norovirus. Appl. Environ. Microbiol. 2010, 76, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Zhang, K.; Wang, F.; Lin, L.; Guo, H. Removal of organic matters and bacteria by nano-MgO/GAC system. Desalination 2011, 281, 30–34. [Google Scholar] [CrossRef]
- Jin, T.; He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 2011, 13, 6877–6885. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 2003, 54, 177–182. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, H.; Yan, J.; Cai, Y. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2011, 375, 186–192. [Google Scholar] [CrossRef]
- Haas, C.N.; Karra, S.B. Kinetics of microbial inactivation by chlorine—II Kinetics in the presence of chlorine demand. Water Res. 1984, 18, 1451–1454. [Google Scholar] [CrossRef]
- Jain, P.; Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 2005, 90, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, P.G.; Traversa, E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 2005, 17, 5255–5262. [Google Scholar] [CrossRef]
- Yoon, K.-Y.; Hoon Byeon, J.; Park, J.-H.; Hwang, J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 2007, 373, 572–575. [Google Scholar] [CrossRef]
- Huang, L.; Li, D.; Lin, Y.; Evans, D.G.; Duan, X. Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chin. Sci. Bull. 2005, 50, 514–519. [Google Scholar]
- Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V.K.; Nevěčná, T.; Zbořil, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 2006, 110, 16248–16253. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv. Funct. Mater. 2005, 15, 1708–1715. [Google Scholar] [CrossRef]
- Sundrarajan, M.; Suresh, J.; Gandhi, R.R. A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Dig. J. Nanomater. Biostruct. 2012, 7, 983–989. [Google Scholar]
- Kumar, V.S.; Nagaraja, B.M.; Shashikala, V.; Padmasri, A.H.; Madhavendra, S.S.; Raju, B.D.; Rao, K.S.R. Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J. Mol. Catal. A Chem. 2004, 223, 313–319. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar]
- Huang, L.; Li, D.-Q.; Lin, Y.-J.; Wei, M.; Evans, D.G.; Duan, X. Controllable preparation of nano-MgO and investigation of its bactericidal properties. J. Inorg. Biochem. 2005, 99, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, K.; Manivannan, G.; Kim, S.J.; Jeyasubramanian, K.; Premanathan, M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J. Nanopart. Res. 2012, 14, 1063. [Google Scholar] [CrossRef]
- Yamamoto, O.; Ohira, T.; Alvarez, K.; Fukuda, M. Antibacterial characteristics of CaCO3–MgO composites. Mater. Sci. Eng. B 2010, 173, 208–212. [Google Scholar] [CrossRef]
- Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679–6686. [Google Scholar] [CrossRef]
- Emamifar, A.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 2011, 22, 408–413. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Gammoudi, I.; Faye, N.R.; Morote, F.; Moynet, D.; Grauby-Heywang, C.; Cohen-Bouhacina, T. Characterization of silica nanoparticles in interaction with Escherichia coli bacteria. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2013, 7, 519–526. [Google Scholar]
- Brownheim, S.V. Characterization and In Vitro Toxicity of Copper Nanoparticles (Cu-NPs) in Murine Neuroblastoma (N2A) Cells. Master’s Thesis, US Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA, 2011. [Google Scholar]
- Valodkar, M.; Sharma, P.; Kanchan, D.K.; Thakore, S. Conducting and antimicrobial properties of silver nanowire–waxy starch nanocomposites. Int. J. Green Nanotechnol. Phys. Chem. 2010, 2, P10–P19. [Google Scholar] [CrossRef]
- Yim, G.; Wang, H.H.; Davies, J. The truth about antibiotics. Int. J. Med. Microbiol. 2006, 296, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Vijver, M.G.; Peijnenburg, W.J.G.M. Impact of water chemistry on the behavior and fate of copper nanoparticles. Environ. Pollut. 2018, 234, 684–691. [Google Scholar] [CrossRef]
- Chambers, B.A.; Afrooz, A.R.M.N.; Bae, S.; Aich, N.; Katz, L.; Saleh, N.B.; Kirisits, M.J. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol. 2014, 48, 761–769. [Google Scholar] [CrossRef]
- Kittler, S.; Greulich, C.; Diendorf, J.; Köller, M.; Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010, 22, 4548–4554. [Google Scholar] [CrossRef]
- Levard, C.; Mitra, S.; Yang, T.; Jew, A.D.; Badireddy, A.R.; Lowry, G.V.; Brown, G.E. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738–5745. [Google Scholar] [CrossRef]
- Xiu, Z.; Zhang, Q.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Westerhoff, P.; Crittenden, J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009, 43, 4249–4257. [Google Scholar] [CrossRef] [PubMed]
- Van Hoecke, K.; De Schamphelaere, K.A.C.; Van der Meeren, P.; Smagghe, G.; Janssen, C.R. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011, 159, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Application of Silver Nanoparticles in Drinking Water Purification. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2013. [Google Scholar]
- Lv, Q.; Zhang, B.; Xing, X.; Zhao, Y.; Cai, R.; Wang, W.; Gu, Q. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J. Hazard. Mater. 2018, 347, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Sawai, J.; Kojima, H.; Igarashi, H.; Hashimoto, A.; Shoji, S.; Sawaki, T.; Hakoda, A.; Kawada, E.; Kokugan, T.; Shimizu, M. Antibacterial characteristics of magnesium oxide powder. World J. Microbiol. Biotechnol. 2000, 16, 187–194. [Google Scholar] [CrossRef]
- Dong, C.; Cairney, J.; Sun, Q.; Maddan, O.L.; He, G.; Deng, Y. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. J. Nanopart. Res. 2010, 12, 2101–2109. [Google Scholar] [CrossRef]
Parameter | MSF Distillate | RO Permeate |
---|---|---|
F− (mg/L) | 0.009 | 0.025 |
Cl− (mg/L) | 10.6 | 103 |
NO3− (mg/L) | 0.24 | 0.2 |
SO42− (mg/L) | 1.3 | 4.2 |
Na+ (mg/L) | 12 | 80 |
K+ (mg/L) | 2 | 7 |
Ca2+ (mg/L) | 4 | 12 |
Mg2+ (mg/L) | <1 | <1 |
HCO3− (mg/L) | 15 | <1 |
EC (µS/cm) | 80 | 448 |
Ionic strength (mM) | 1.28 | 7.17 |
Bacterial Strain | Selective Medium | MSF Distillate | RO Permeate |
---|---|---|---|
E. coli | Eosin Methylene Blue (EMB) agar | ND | ND |
Pseudomonas aeruginosa | System Lactose Electrolyte Deficient (SLED) agar | 30 | 5.6 × 105 |
Coliform bacilli | M-Endo broth membrane filter (MF) | 2.4 × 1010 | 8.3 × 105 |
Enterococci | Kf-Streptococcus agar | ND | ND |
Sulfite reducing clostridia | Sulfite reducing clostridia selective agar | ND | ND |
Bacteria | Strain | Selective Media |
---|---|---|
E. coli | NCIB 12210 | EMB agar (Fluka analytical) |
Enterobacter aerogenes | TPC129 | MacConkey agar (Sigma-Aldrich) |
Salmonella Typhimurium | ATCC 14028 | Xylose Lysine Deoxycholate (XLD) agar (Fluka analytical) |
Enterococci faecalis | NCTC775 | Kf-Streptococcus agar (Fluka analytical) |
NPs | MSF Water | RO Water | ||||||
---|---|---|---|---|---|---|---|---|
C1 | C2 | t1 | t2 | C1 | C2 | t1 | t2 | |
Spiked water samples with E. coli and Enterococci | ||||||||
Ag | 2.6 | 5.35 | 60 | 120 | 2.6 | 5.35 | 60 | 120 |
Ag-Cu | 2.6 | 5.35 | 60 | 120 | 2.6 | 5.35 | 60 | 120 |
Cu | 50 | 100 | 60 | 120 | 50 | 100 | 60 | 120 |
ZnO | 50 | 100 | 60 | 120 | 50 | 100 | 60 | 120 |
MgO | 50 | 100 | 60 | 120 | 50 | 100 | 60 | 120 |
SiO2 | 25 | 50 | 60 | 120 | 50 | 100 | 60 | 120 |
CNTs | 50 | 100 | 60 | 120 | 50 | 100 | 60 | 120 |
Spiked water samples with Enterobacter and Salmonella | ||||||||
Ag | 2.6 | 5.35 | 30 | 60 | 2.6 | 5.35 | 30 | 60 |
Ag-Cu | 2.6 | 5.35 | 30 | 60 | 2.6 | 5.35 | 30 | 60 |
Cu | 50 | 100 | 30 | 60 | 50 | 100 | 30 | 60 |
ZnO | 50 | 100 | 30 | 60 | 50 | 100 | 30 | 60 |
MgO | 50 | 100 | 30 | 60 | 50 | 100 | 30 | 60 |
SiO2 | 25 | 50 | 30 | 60 | 50 | 100 | 30 | 60 |
CNTs | 50 | 100 | 30 | 60 | 50 | 100 | 30 | 60 |
Bacteria | t (min) | MSF Distillate | RO Permeate |
---|---|---|---|
E. coli | 60 | 0.85 (±0.15) | 0.71 (±0.14) |
120 | 0.73 (±0.17) | 0.56 (±0.19) | |
Enterobacter | 30 | 0.84 (±0.09) | 0.75 (±0.12) |
60 | 0.62 (±0.16) | 0.42 (±0.09) | |
Salmonella | 30 | 0.78 (±0.14) | 0.83 (±0.11) |
60 | 0.59 (±0.15) | 0.62 (±0.19) | |
Enterococci | 60 | 0.87 (±0.10) | 0.83 (±0.08) |
120 | 0.71 (±0.17) | 0.69 (±0.11) |
NPs | Size (nm) | Surface Charge | Morphology |
---|---|---|---|
Ag | 29.6 | negative | irregular |
Ag-Cu | 34.8 | negative | irregular |
Cu | 37.8 | negative | irregular |
ZnO | 12.0 | positive | irregular |
MgO | 229.2 | positive | irregular |
SiO2 | 386.8 | negative | spherical |
CNTs | Not available | negative | cylindrical |
NPs | Bacteria Type | |||
---|---|---|---|---|
E. coli | Enterobacter | Salmonella | Enterococci | |
Low C.t: (C1.t1) (n = 3) | ||||
Ag | 1.38 (±0.148) | 0.92 (±0.173) | 0.57 (±0.039) | 1.55 (±0.194) |
Ag-Cu | 0.35 (±0.095) | 1.00 (±0.029) | 0.37 (±0.012) | 0.58 (±0.190) |
Cu | 0.12 (±0.004) | 0.53 (±0.019) | 0.41 (±0.057) | 0.29 (±0.044) |
ZnO | 0.25 (±0.187) | 0.47 (±0.028) | 0.17 (±0.055) | 0.05 (±0.012) |
MgO | 0.10 (±0.022) | 0.11 (±0.029) | 0.99 (±0.168) | 0.07 (±0.006) |
SiO2 | 0.04 (±0.025) | 0.20 (±0.170) | 0.04 (±0.015) | 0.14 (±0.017) |
CNTs | 0.32 (±0.066) | 0.18 (±0.074) | 0.15 (±0.048) | 0.20 (±0.038) |
Moderate C.t: (C1.t2 or C2.t1) (n = 6) | ||||
Ag | 2.24 (±0.369) | 1.42 (±0.724) | 1.21 (±0.417) | 2.28 (±0.223) |
Ag-Cu | 1.98 (±0.745) | 1.43 (±0.067) | 0.91 (±0.114) | 1.09 (±0.213) |
Cu | 0.24 (±0.138) | 0.47 (±0.075) | 0.62 (±0.106) | 0.39 (±0.122) |
ZnO | 0.84 (±0.373) | 0.56 (±0.496) | 0.44 (±0.297) | 0.10 (±0.023) |
MgO | 0.26 (±0.185) | 0.51 (±0.076) | 1.19 (±0.159) | 0.24 (±0.192) |
SiO2 | 0.10 (±0.041) | 0.33 (±0.100) | 0.16 (±0.075) | 0.16 (±0.030) |
CNTs | 0.58 (±0.061) | 0.28 (±0.102) | 0.43 (±0.090) | 0.45 (±0.047) |
High C.t: (C2.t2) (n = 3) | ||||
Ag | 2.43 (±0.026) | 2.51 (±0.034) | 2.35 (±0.084) | 2.35 (±0.049) |
Ag-Cu | 2.51 (±0.034) | 2.43 (±0.076) | 2.48 (±0.029) | 1.51 (±0.365) |
Cu | 0.37 (±0.079) | 0.65 (±0.049) | 0.73 (±0.142) | 0.55 (±0.085) |
ZnO | 1.80 (±0.253) | 0.31 (±0.232) | 0.61 (±0.343) | 0.15 (±0.030) |
MgO | 0.77 (±0.043) | 1.40 (±0.112) | 1.92 (±0.152) | 0.45 (±0.026) |
SiO2 | 0.16 (±0.202) | 0.42 (±0.108) | 0.30 (±0.157) | 0.19 (±0.083) |
CNTs | 1.21 (±0.190) | 0.46 (±0.271) | 0.66 (±0.218) | 0.77 (±0.472) |
NPs | Bacteria Type | |||
---|---|---|---|---|
E. coli | Enterobacter | Salmonella | Enterococci | |
Low C.t: (C1.t1) (n = 3) | ||||
Ag | 2.09 (±0.063) | 2.06 (±0.410) | 0.28 (±0.064) | 0.53 (±0.186) |
Ag-Cu | 0.19 (±0.144) | 1.12 (±0.307) | 0.36 (±0.105) | 0.28 (±0.105) |
Cu | 0.03 (±0.005) | 0.60 (±0.091) | 1.00 (±0.041) | 0.43 (±0.046) |
ZnO | 0.27 (±0.033) | 0.12 (±0.103) | 0.40 (±0.068) | 0.01 (±0.003) |
MgO | 0.23 (±0.022) | 0.01 (±0.003) | 0.17 (±0.037) | 0.04 (±0.001) |
SiO2 | 0.07 (±0.026) | 0.15 (±0.127) | 0.06 (±0.058) | 0.06 (±0.042) |
CNTs | 0.29 (±0.078) | 0.17 (±0.043) | 0.31 (±0.055) | 0.18 (±0.013) |
Moderate C.t: (C1.t2 or C2.t1) (n = 6) | ||||
Ag | 2.24 (±0.207) | 2.14 (±0.482) | 0.74 (±0.152) | 1.86 (±0.450) |
Ag-Cu | 1.29 (±0.838) | 1.68 (±0.605) | 0.60 (±0.207) | 0.35 (±0.082) |
Cu | 0.11 (±0.026) | 0.61 (±0.175) | 1.21 (±0.155) | 1.64 (±1.006) |
ZnO | 0.54 (±0.294) | 0.15 (±0.125) | 0.54 (±0.050) | 0.06 (±0.047) |
MgO | 0.25 (±0.055) | 0.03 (±0.020) | 0.13 (±0.076) | 0.04 (±0.025) |
SiO2 | 0.13 (±0.070) | 0.25 (±0.101) | 0.06 (±0.037) | 0.06 (±0.032) |
CNTs | 0.78 (±0.076) | 0.23 (±0.084) | 0.49 (±0.130) | 0.45 (±0.054) |
High C.t: (C2.t2) (n = 3) | ||||
Ag | 2.10 (±0.199) | 1.90 (±0.314) | 2.35 (±0.084) | 2.49 (±0.052) |
Ag-Cu | 2.20 (±0.143) | 2.25 (±0.091) | 0.92 (±0.394) | 0.48 (±0.146) |
Cu | 0.09 (±0.020) | 1.10 (±0.488) | 1.98 (±0.260) | 2.32 (±0.021) |
ZnO | 0.57 (±0.077) | 0.31 (±0.232) | 0.62 (±0.017) | 0.11 (±0.031) |
MgO | 0.29 (±0.039) | 0.46 (±0.459) | 0.12 (±0.004) | 0.06 (±0.058) |
SiO2 | 0.16 (±0.024) | 0.32 (±0.023) | 0.09 (±0.019) | 0.10 (±0.027) |
CNTs | 1.04 (±0.062) | 0.41 (±0.030) | 0.71 (±0.113) | 0.94 (±0.423) |
Water Type | NPs | Bacteria Type | |||||||
---|---|---|---|---|---|---|---|---|---|
E. coli | Enterococci | Enterobacter | Salmonella | ||||||
k | R2 | k | R2 | k | R2 | k | R2 | ||
Spiked MSF distillate | Ag | 4.63 | 0.90 | 4.61 | 0.87 | 8.23 | 0.99 | 7.38 | 1.00 |
Ag-Cu | 4.27 | 0.95 | 2.62 | 0.96 | 8.11 | 0.98 | 7.21 | 0.98 | |
Cu | 0.03 | 0.99 | 0.05 | 0.94 | 0.13 | 0.85 | 0.15 | 0.92 | |
ZnO | 0.14 | 0.99 | 0.01 | 0.99 | 0.09 | 0.60 | 0.11 | 0.97 | |
MgO | 0.06 | 0.96 | 0.04 | 0.99 | 0.22 | 0.97 | 0.35 | 0.95 | |
SiO2 | 0.03 | 0.99 | 0.04 | 0.87 | 0.17 | 0.92 | 0.10 | 0.99 | |
CNTs | 0.10 | 1.00 | 0.07 | 1.00 | 0.08 | 0.98 | 0.12 | 0.99 | |
Spiked RO permeate | Ag | 8.32 | NA a | 4.24 | 0.97 | 16.2 | NA a | 6.66 | 0.97 |
Ag-Cu | 3.45 | 0.98 | 0.87 | 0.92 | 8.02 | 0.94 | 3.11 | 0.98 | |
Cu | 0.01 | 0.85 | 0.21 | 0.97 | 0.20 | 0.95 | 0.36 | 0.96 | |
ZnO | 0.06 | 0.91 | 0.01 | 0.99 | 0.05 | 0.99 | 0.13 | 0.89 | |
MgO | 0.03 | 0.85 | 0.01 | 0.91 | 0.06 | 0.83 | 0.03 | 0.64 | |
SiO2 | 0.02 | 0.94 | 0.01 | 0.94 | 0.06 | 0.95 | 0.02 | 0.94 | |
CNTs | 0.10 | 0.97 | 0.08 | 1.00 | 0.07 | 0.98 | 0.13 | 0.97 |
NPs | Bacteria Type | |||
---|---|---|---|---|
E. coli | Enterobacter | Salmonella | Enterococci | |
Ag | 0.96 (±0.28) | 0.77 (±0.46) | 1.61 (±0.85) | 1.60 (±1.09) |
Ag-Cu | 1.66 (±0.66) | 0.93 (±0.14) | 1.75 (±0.97) | 2.91 (±0.95) |
Cu | 3.14 (±1.25) | 0.75 (±0.14) | 0.46 (±0.09) | 0.38 (±0.27) |
ZnO | 2.24 (±1.96) | 2.86 (±2.61) | 0.75 (±0.37) | 2.42 (±1.63) |
MgO | 1.28 (±1.27) | 10.80 (±6.96) | 11.25 (±6.85) | 5.21 (±4.62) |
SiO2 a | 1.60 (±0.35) | 2.58 (±2.27) | 3.99 (±10.23) | 3.24 (±0.63) |
CNTs | 0.95 (±0.27) | 1.22 (±0.44) | 0.80 (±0.26) | 0.98 (±0.15) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Issai, L.; Elshorbagy, W.; Maraqa, M.A.; Hamouda, M.; Soliman, A.M. Use of Nanoparticles for the Disinfection of Desalinated Water. Water 2019, 11, 559. https://doi.org/10.3390/w11030559
Al-Issai L, Elshorbagy W, Maraqa MA, Hamouda M, Soliman AM. Use of Nanoparticles for the Disinfection of Desalinated Water. Water. 2019; 11(3):559. https://doi.org/10.3390/w11030559
Chicago/Turabian StyleAl-Issai, Laila, Walid Elshorbagy, Munjed A. Maraqa, Mohamed Hamouda, and Ahmed M. Soliman. 2019. "Use of Nanoparticles for the Disinfection of Desalinated Water" Water 11, no. 3: 559. https://doi.org/10.3390/w11030559
APA StyleAl-Issai, L., Elshorbagy, W., Maraqa, M. A., Hamouda, M., & Soliman, A. M. (2019). Use of Nanoparticles for the Disinfection of Desalinated Water. Water, 11(3), 559. https://doi.org/10.3390/w11030559