Next Article in Journal
Development of a Novel Climate Adaptation Algorithm for Climate Risk Assessment
Next Article in Special Issue
From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities
Previous Article in Journal
Evaluation of Water Uptake and Root Distribution of Cherry Trees under Different Irrigation Methods
Previous Article in Special Issue
Impact of Urban Growth and Changes in Land Use on River Flood Hazard in Villahermosa, Tabasco (Mexico)
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle

A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding

1
Advanced VR Research Centre, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
2
School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
3
Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4QF, UK
*
Author to whom correspondence should be addressed.
Water 2019, 11(3), 496; https://doi.org/10.3390/w11030496
Received: 5 February 2019 / Revised: 25 February 2019 / Accepted: 3 March 2019 / Published: 8 March 2019
(This article belongs to the Special Issue Flood Risk and Resilience)
  |  
PDF [6052 KB, uploaded 8 March 2019]
  |  

Abstract

There is a clear and evident requirement for a conscious effort to be made towards a resilient water system-of-systems (SoS) within the UK, in terms of both supply and flooding. The impact of flooding goes beyond the immediately obvious socio-aspects of disruption, cascading and affecting a wide range of connected systems. The issues caused by flooding need to be treated in a fashion which adopts an SoS approach to evaluate the risks associated with interconnected systems and to assess resilience against flooding from various perspectives. Changes in climate result in deviations in frequency and intensity of precipitation; variations in annual patterns make planning and management for resilience more challenging. This article presents a verified model-based system engineering methodology for decision-makers in the water sector to holistically, and systematically implement resilience within the water context, specifically focusing on effects of flooding on water supply. A novel resilience viewpoint has been created which is solely focused on the resilience aspects of architecture that is presented within this paper. Systems architecture modelling forms the basis of the methodology and includes an innovative resilience viewpoint to help evaluate current SoS resilience, and to design for future resilient states. Architecting for resilience, and subsequently simulating designs, is seen as the solution to successfully ensuring system performance does not suffer, and systems continue to function at the desired levels of operability. The case study presented within this paper demonstrates the application of the SoS resilience methodology on water supply networks in times of flooding, highlighting how such a methodology can be used for approaching resilience in the water sector from an SoS perspective. The methodology highlights where resilience improvements are necessary and also provides a process where architecture solutions can be proposed and tested. View Full-Text
Keywords: architecture modelling flood resilience; resilience engineering; system-of-systems water systems architecture modelling flood resilience; resilience engineering; system-of-systems water systems
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Joannou, D.; Kalawsky, R.; Saravi, S.; Rivas Casado, M.; Fu, G.; Meng, F. A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding. Water 2019, 11, 496.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top