Synchronization Optimization of Pipeline Layout and Pipe Diameter Selection in a Self-Pressurized Drip Irrigation Network System Based on the Genetic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Description and Generalization
2.2. Mathematical Models
2.2.1. Mathematical Model for the BLPN Subsystem
Objective Function
Constraints
2.2.2. Mathematical Model for the MSMPN Subsystem
Objective Function
Constraints
2.2.3. Mathematical Model for the WPN System
Objective Function
Constraint Conditions
2.3. Method of the Model Solving
2.3.1. GA Based on the Infeasibility Degree (IFD) of the Solution
2.3.2. Overall Solution Process of the Model
GA for Optimizing the BLPN Subsystem
GA for Optimizing the MSMPN Subsystem
GA for Optimizing the WPN System
3. Case Study
3.1. Basic Information
3.2. Optimization Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Lf, Wf | Field length and field width |
lb_min, lb_max | Minimum and maximum allowable branch pipe lengths |
ll_min, ll_max | Minimum and maximum allowable lateral pipe lengths |
Nm_min, Nm_max | Minimum and maximum number of segments per the main pipe |
Ns_min, Ns_max | Minimum and maximum number of segments per sub-main pipe |
Nm, Ns | Number of main, and sub-main pipe sections |
Rdis | Pressure distribution ratio of the BLPN subsystem pressure to the entire pressure to be distributed |
Db_end | End section of the branch pipe |
α1, α2, α3 | Ratios of the length of same-diameter sections of a branch pipe to the unallocated length of the branch pipe |
lb1, lb2, lb3, lb4, lb | Lengths of branch pipe sections 1, 2, 3, and 4, and length of the branch pipe |
Db1, Db2, Db3, Db4, Db_ent | Diameters of branch pipe sections 1, 2, 3, and 4, and diameter of the entrance section of the branch pipe |
Qb1, Qb2, Qb3, Qb4, Qb | Discharges of branch pipe sections 1, 2, 3, and 4, and discharge of the branch pipe |
CBL | Total cost of the pipes in the BLPN subsystem |
HBL_max | Maximum total water head loss in the BLPN subsystem |
ls_sec, lm_sec | Lengths of the main and sub-main pipe sections |
Ds1, Ds2, …, DsNs | Diameters of sub-main pipe sections 1, 2, ..., Ns |
Dm1, Dm2, …, DmNm | Diameters of sub-main pipe sections 1, 2, ..., Nm |
CMSM | Total cost of the pipes in the MSMPN subsystem |
HMSM_max | Maximum total water head loss in the MSMPN subsystem |
Nm_WPN, Ns_WPN | Number of main and sub-main pipe sections of the optimal WPN system |
lb1_WPN, lb2_WPN, lb3_WPN, lb4_WPN, lb_WPN | Lengths of branch pipe sections 1, 2, 3, and 4, and length of the branch pipe of the optimal WPN system |
Db1_WPN, Db2_WPN, Db3_WPN, Db4_WPN, Db_ent_WPN | Diameters of branch pipe sections 1, 2, 3, and 4, and diameter of the entrance section of the branch pipe of the optimal WPN system |
Qb1_WPN, Qb2_WPN, Qb3_WPN, Qb4_WPN, Qb_WPN | Discharges of branch pipe sections 1, 2, 3, and 4, and discharge of the branch pipe of the optimal WPN system |
Ds1_WPN, Ds2_WPN, …, DsNs_WPN | Diameters of sub-main pipe sections 1, 2, ..., Ns of the optimal WPN system |
Dm1_WPN, Dm2_WPN, …, DmNm_WPN | Diameters of sub-main pipe sections 1, 2, ..., Nm of the optimal WPN system |
CBL_WPN | Total cost of the pipes in the BLPN subsystem of the optimal WPN system |
CMSM_WPN | Total cost of the pipes in the MSMPN subsystem of the optimal WPN system |
CWPN | Total cost of pipes in the optimal WPN system |
HBL_max | Maximum total water head loss in the BLPN subsystem of the optimal WPN system |
HMSM_max | Maximum total water head loss in the MSMPN subsystem of the optimal WPN system |
References
- Tan, S.; Wang, Q.; Zhang, J.; Chen, Y.; Shan, Y.; Xu, D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agric. Water Manag. 2018, 196, 99–113. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Gui, D.; Tenuta, M.; Flaten, D.N.; Yin, M.; Zeng, F. Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crop. Res. 2018, 229, 17–26. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.Y.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern xinjiang, china. Field Crop. Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Baiamonte, G. Advances in designing drip irrigation laterals. Agric. Water Manag. 2018, 199, 157–174. [Google Scholar] [CrossRef] [Green Version]
- El-Hendawy, S.E.; Schmidhalter, U. Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil. Agric. Water Manag. 2010, 97, 439–448. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, H.; Zhao, Y.; Qi, Z.; Zhang, T.; He, J.; Dyck, M. Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric. Water Manag. 2017, 184, 114–123. [Google Scholar] [CrossRef]
- Zhou, L.; He, J.; Qi, Z.; Dyck, M.; Zou, Y.; Zhang, T.; Feng, H. Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency. Agric. Water Manag. 2018, 199, 190–200. [Google Scholar] [CrossRef]
- Chakraborty, D.; Nagarajan, S.; Aggarwal, P.; Gupta, V.K.; Tomar, R.K.; Garg, R.N.; Sahoo, R.N.; Sarkar, A.; Chopra, U.K.; Sarma, K.S.S.; et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 2008, 95, 1323–1334. [Google Scholar] [CrossRef]
- Erenstein, O. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil Tillage Res. 2002, 67, 115–133. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.; Xiao, C.; Xie, R.; Ming, B.; Hou, P.; Liu, G.; Xu, W.; Shen, D.; Wang, K.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crop. Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Feike, T.; Khor, L.Y.; Mamitimin, Y.; Ha, N.; Li, L.; Abdusalih, N.; Xiao, H.; Doluschitz, R. Determinants of cotton farmers’ irrigation water management in arid northwestern china. Agric. Water Manag. 2017, 187, 1–10. [Google Scholar] [CrossRef]
- Tian, F.; Yang, P.; Hu, H.; Liu, H. Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China. Agric. Water Manag. 2017, 179, 110–121. [Google Scholar] [CrossRef]
- Wang, R.; Kang, Y.; Wan, S. Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China. Agric. Water Manag. 2015, 153, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Giménez, J.L.; Calvet, J.-L.; Alonso, A. A Two-Level Dynamic Programming Method for the Optimal Design of Sewerage Networks. IFAC Proc. Vol. 1995, 28, 537–542. [Google Scholar] [CrossRef]
- Alperovits, E.; Shamir, U. Design of optimal water distribution systems. Water Resour. Res. 1977, 13, 885–900. [Google Scholar] [CrossRef]
- Theocharis, M.E.; Tzimopoulos, C.D.; Sakellariou-Makrantonaki, M.A.; Yannopoulos, S.I.; Meletiou, I.K. Comparative calculation of irrigation networks using Labye’s method, the linear programming method and a simplified nonlinear method. Math. Comput. Model. 2010, 51, 286–299. [Google Scholar] [CrossRef]
- Arai, Y.; Koizumi, A.; Inakazu, T.; Masuko, A.; Tamura, S. Optimized operation of water distribution system using multipurpose fuzzy LP model. Water Sci. Technol.-Water Supply 2013, 13, 66–73. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549. [Google Scholar] [CrossRef]
- Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 89–98. [Google Scholar] [CrossRef]
- Glover, F. Tabu Search—Part II. ORSA J. Comput. 1990, 2, 4–32. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization & Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, IV, Perth, Western Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. Harmony search optimization: Application to pipe network design. Int. J. Simul. Model. 2002, 22, 9. [Google Scholar] [CrossRef]
- Eusuff, M.; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim. 2006, 38, 129–154. [Google Scholar] [CrossRef]
- Erchiqui, F. Application of genetic and simulated annealing algorithms for optimization of infrared heating stage in thermoforming process. Appl. Therm. Eng. 2018, 128, 1263–1272. [Google Scholar] [CrossRef]
- Keedwell, E.; Khu, S.T. A hybrid genetic algorithm for the design of water distribution networks. Eng. Appl. Artif. Intell. 2005, 18, 461–472. [Google Scholar] [CrossRef]
- Guerrero, M.; Montoya, F.G.; Baños, R.; Alcayde, A.; Gil, C. Adaptive community detection in complex networks using genetic algorithms. Neurocomputing 2017, 266, 101–113. [Google Scholar] [CrossRef]
- Kiziloz, H.E.; Dokeroglu, T. A robust and cooperative parallel tabu search algorithm for the maximum vertex weight clique problem. Comput. Ind. Eng. 2018, 118, 54–66. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, Y.Y.; Li, K.; Zhao, X.G.; Guan, G. A human-computer cooperation improved ant colony optimization for ship pipe route design. Ocean Eng. 2018, 150, 12–20. [Google Scholar] [CrossRef]
- Dastmalchi, M.; Sheikhzadeh, G.A.; Arefmanesh, A. Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm. Appl. Therm. Eng. 2017, 119, 1–9. [Google Scholar] [CrossRef]
- Simpson, A.; Dandy, G.; Murphy, L. Genetic algorithms compared to other techniques for pipe optimization. J. Water Resour. Plan. Manag. 1994, 120, 423–443. [Google Scholar] [CrossRef]
- Savic, D.A.; Walters, G.A. Genetic algorithms for least-cost design of water distribution networks. J. Water Resour. Plan. Manag. 1997, 123, 67–77. [Google Scholar] [CrossRef]
- da Conceição Cunha, M.; Sousa, J. Water distribution network design optimization: Simulated annealing approach. J. Water Resour. Plan. Manag. 1999, 125, 69–70. [Google Scholar]
- Chung, G.; Lansey, K. Application of the Shuffled Frog Leaping Algorithm for the Optimization of a General Large-Scale Water Supply System. Water Resour. Manag. 2008, 23, 797–823. [Google Scholar] [CrossRef]
- Trigueros, D.E.G.; Módenes, A.N.; Ravagnani, M.A.S.S.; Espinoza-Quiñones, F.R. Reuse water network synthesis by modified PSO approach. Chem. Eng. J. 2012, 183, 198–211. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.W.; Ramakrishna, R.S. A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans. Evol. Comput. 2002, 6, 566–579. [Google Scholar] [Green Version]
- Michalewicz, Z.; Janikow, C.Z.; Krawczyk, J.B. A modified genetic algorithm for optimal control problems. Comput. Math. Appl. 1992, 23, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Lavric, V.; Iancu, P.; Pleşu, V. Genetic algorithm optimisation of water consumption and wastewater network topology. J. Clean Prod. 2005, 13, 1405–1415. [Google Scholar] [CrossRef]
- Hartmann, S. A competitive genetic algorithm for resource-constrained project scheduling. Nav. Res. Logist. 2015, 45, 733–750. [Google Scholar] [CrossRef]
- Moradi, M.H.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
- Maity, S.; Roy, A.; Maiti, M. An imprecise Multi-Objective Genetic Algorithm for uncertain Constrained Multi-Objective Solid Travelling Salesman Problem. Expert Syst. Appl. 2016, 46, 196–223. [Google Scholar] [CrossRef]
- Giassi, M.; Göteman, M. Layout design of wave energy parks by a genetic algorithm. Ocean Eng. 2018, 154, 252–261. [Google Scholar] [CrossRef]
- De, M.; Das, B.; Maiti, M. Green logistics under imperfect production system: A Rough age based Multi-Objective Genetic Algorithm approach. Comput. Ind. Eng. 2018, 119, 100–113. [Google Scholar] [CrossRef]
- Babbar-Sebens, M.; Minsker, B.S. Interactive Genetic Algorithm with Mixed Initiative Interaction for multi-criteria ground water monitoring design. Appl. Soft. Comput. 2018, 12, 182–195. [Google Scholar] [CrossRef]
- Bi, W.; Dandy, G.C.; Maier, H.R. Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. Environ. Model. Softw. 2015, 69, 370–381. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic algorithms + data structures = evolution programs. Comput. Stat. Data Anal. 1996, 24, 372–373. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Meth. Appl. Mech. Eng. 2002, 186, 311–338. [Google Scholar] [CrossRef]
- Mu, S.M.S.; Su, H.S.H.; Mao, W.M.W.; Chen, Z.C.Z.; Chu, J.C.J. A new genetic algorithm to handle the constrained optimization problem. In Proceedings of the IEEE Conference on Decision & Control, Las Vegas, NV, USA, 10–13 December 2012. [Google Scholar]
Low-density polyethylene (LDPE) pipes (with a pressure capacity of 0.6 Mpa) | |||||||
Outside diameter (mm) | 32 | 40 | 63 | 75 | 90 | 110 | 125 |
Inner diameter (mm) | 28.8 | 35.2 | 55.4 | 66 | 79.4 | 100 | 115 |
Unit price (Yuan/m) | 4.56 | 5.18 | 6.2 | 8.21 | 9.36 | 10.29 | 12.48 |
Unplasticized polyvinyl chloride (UPVC) pipes (with a pressure capacity of 0.6 Mpa) | |||||||
Outside diameter (mm) | 63 | 75 | 90 | 110 | 125 | 140 | 160 |
Inner diameter (mm) | 60.2 | 71.6 | 86 | 105 | 119.2 | 132 | 153 |
Unit price (Yuan/m) | 4.75 | 6.49 | 9.33 | 12.42 | 16.37 | 20.33 | 26.57 |
Outside diameter (mm) | 180 | 200 | 225 | 250 | 315 | 355 | 400 |
Inner diameter (mm) | 170 | 190 | 215 | 240 | 305 | 345 | 390 |
Unit price (Yuan/m) | 32.51 | 40.34 | 50.93 | 63.59 | 99.18 | 119.97 | 144.10 |
Section Number | The Proposed Method | The Empirical Method | ||
---|---|---|---|---|
Length (m) | Diameter (mm) | Length (m) | Diameter (mm) | |
1 | 29 | 63 | 62.5 | 90 |
2 | 19 | 75 | ||
3 | 14.5 | 90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.-H.; He, W.-Q.; Lou, Z.-K.; Nie, W.-B.; Ma, X.-Y. Synchronization Optimization of Pipeline Layout and Pipe Diameter Selection in a Self-Pressurized Drip Irrigation Network System Based on the Genetic Algorithm. Water 2019, 11, 489. https://doi.org/10.3390/w11030489
Zhao R-H, He W-Q, Lou Z-K, Nie W-B, Ma X-Y. Synchronization Optimization of Pipeline Layout and Pipe Diameter Selection in a Self-Pressurized Drip Irrigation Network System Based on the Genetic Algorithm. Water. 2019; 11(3):489. https://doi.org/10.3390/w11030489
Chicago/Turabian StyleZhao, Rong-Heng, Wu-Quan He, Zong-Ke Lou, Wei-Bo Nie, and Xiao-Yi Ma. 2019. "Synchronization Optimization of Pipeline Layout and Pipe Diameter Selection in a Self-Pressurized Drip Irrigation Network System Based on the Genetic Algorithm" Water 11, no. 3: 489. https://doi.org/10.3390/w11030489
APA StyleZhao, R. -H., He, W. -Q., Lou, Z. -K., Nie, W. -B., & Ma, X. -Y. (2019). Synchronization Optimization of Pipeline Layout and Pipe Diameter Selection in a Self-Pressurized Drip Irrigation Network System Based on the Genetic Algorithm. Water, 11(3), 489. https://doi.org/10.3390/w11030489