Assessing Water and Nutrient Long-Term Dynamics and Loads in the Enxoé Temporary River Basin (Southeast Portugal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model Description
2.3. Model Setup and Calibration
2.3.1. Model Implementation
2.3.2. Calibration Procedure
2.3.3. Statistical Analysis
2.3.4. The Long-Term Dynamics of the Enxoé Catchment
3. Results and Discussion
3.1. Model Results Versus Field Data
3.1.1. Reservoir Inflow
3.1.2. River Sediment and Nutrient Loads
Sediment Load
Nutrient Loads
3.2. Enxoé Watershed Long-Term Budget
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- CCDR Alentejo. Anuário de recursos hídricos do Alentejo. Ano Hidrológico 2003/2004; MAOTDR: Évora, Portugal, 2005. (In Portuguese) [Google Scholar]
- Instituto Nacional da Água. Poluição Provocada por Nitratos de Origem Agrícola. Directiva 91/676/CEE, de 12 de Dezembro de 1991. Relatório (2004–2007); Publicação conjunta do MAOTDR e MADRP: Lisboa, Portugal, 2008. (In Portuguese) [Google Scholar]
- Instituto Nacional da Água. Management of the Trophic Status in Portuguese Reservoirs Volume I Criteria and Assessment of the Trophic Status. Study in the Scope of WWTP Directive and Sensitive Area Plans; Instituto Nacional da Água: Lisboa, Portugal, December 2009.
- Instituto Nacional da Água. Plano de Ordenamento da Albufeira do Enxoé, Estudos de Caracterização e Pré-Proposta de Ordenamento; Instituto da Água, MAOTDR: Lisboa, Portugal, 2004. (In Portuguese) [Google Scholar]
- Valério, E.; Pereira, P.; Saker, M.L.; Franca, S.; Tenreiro, R. Molecular characterization of Cylindrospermopsis raciborskii strains isolated from Portuguese freshwaters. Harmful Algae 2005, 4, 1044–1052. [Google Scholar] [CrossRef]
- Paerl, H.W.; Fulton, R.S.; Moisander, P.H.; Dyble, J. Harmful freshwater algal blooms: With an emphasis on cyanobacteria. Sci. World J. 2001, 1, 76–113. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.E.; James, R.T.; East, T.L.; Smith, V.H. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Poll. 2003, 122, 379–390. [Google Scholar] [CrossRef]
- Rolff, C.; Almesjo, L.; Elmgren, R. Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper. Mar. Ecol. Prog. Ser. 2007, 332, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Coelho, H.; Silva, A.; Chambel-Leitão, P.; Obermann, M. On the origin of cyanobacteria blooms in the Enxoé reservoir. In Proceedings of the 13th World Water Congress, International Water Resources Association, Montpellier, France, 1–4 September 2008. [Google Scholar]
- Ramos, T.B.; Gonçalves, M.C.; Branco, M.A.; Brito, D.; Rodrigues, S.; Sánchez-Pérez, J.M.; Suavage, S.; Prazeres, A.; Martins, J.C.; Fernandes, M.L.; et al. Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. Catena 2015, 127, 177–190. [Google Scholar] [CrossRef]
- Ramos, T.B.; Rodrigues, S.; Branco, M.A.; Prazeres, A.; Brito, D.; Gonçalves, M.C.; Martins, J.C.; Fernandes, M.L.; Pires, F.P. Temporal variability of soil organic carbon transport in the Enxoé agricultural watershed. Environ. Earth Sci. 2015, 73, 6663–6676. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation, Version 2009; Technical Report, No. 406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R.; Van Liew, M. Multi-Site Calibration of the SWAT Model for Hydrologic Modeling. Trans. ASABE 2008, 51, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Geza, M.; McCray, J.E. Effects of soil data resolution on SWAT model stream flow and water quality predictions. J. Environ. Manag. 2008, 88, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Green, C.H.; van Griensven, A. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environ. Model. Softw. 2008, 23, 422–434. [Google Scholar] [CrossRef]
- Yevenes, M.A.; Mannaerts, C.M. Seasonal and land use impacts on the nitrate budget and export of a mesoscale catchment in Southern Portugal. Agric. Water Manag. 2011, 102, 54–65. [Google Scholar] [CrossRef]
- Dechmi, F.; Burguete, J.; Skhiri, A. SWAT application in intensive irrigation systems: Model modification, calibration and validation. J. Hydrol. 2012, 470–471, 227–238. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Mimikou, M. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales. J. Environ. Manag. 2011, 92, 2823–2835. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Parlange, J.-Y. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environ. Model. Assess. 2008, 13, 135–153. [Google Scholar] [CrossRef]
- Brito, D.; Neves, R.; Branco, M.C.; Gonçalves, M.C.; Ramos, T.B. Modeling flood dynamics in a temporary river draining to an eutrophic reservoir in southeast Portugal. Environ. Earth Sci. 2017, 76, 377. [Google Scholar] [CrossRef]
- Brito, D.; Ramos, T.B.; Gonçalves, M.C.; Morais, M.; Neves, R. Integrated modelling for water quality management in a eutrophic reservoir in south-eastern Portugal. Environ. Earth Sci. 2018, 77, 40. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Gonçalves, M.C.; Brito, D.; Castelo Branco, M.A.; Martins, J.C.; Fernandes, M.L.; Pires, F.P.; Morais, M.; Neves, R. An integrated analysis of the eutrophication process in the Enxoé reservoir within the DPSIR framework. Water 2018, 10, 1576. [Google Scholar] [CrossRef]
- Census. Recenseamento Geral Agrícola; Instituto Nacional de Estatística: Lisboa, Portugal, 2001. [Google Scholar]
- European Environmental Agency. Corine Land Cover. Available online: https://www.eea.europa.eu/publications/COR0-landcover (accessed on 30 November 2017).
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; ASCE Manuals and Reports on Engineering Practice No. 70; ASCE: New York, NY, USA, 1990; 332p. [Google Scholar]
- USDA-SCS. Section 4: Hydrology. In National Engineering Handbook; Natural Resources Conservation Service: Washington, DC, USA, 1972. [Google Scholar]
- William, J.R. Sediment routing for agricultural watersheds. Water Resour. Bull. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook 282; USDA-ARS: Washington, DC, USA, 1978.
- McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennet, F.W. Loading Functions for Assessment of Water Pollution from Nonpoint Sources. Environmental Protection Technology Series; EPA 600/2-76-151; EPA: Washington, DC, USA, 1976. [Google Scholar]
- Williams, J.R.; Hann, R.W. Optimal Operation of Large Agricultural Watersheds with Water Quality Constraints; Texas Water Resources Institute, Texas A&M Univ. Tech. Rep. No. 96; Texas Water Resources Institute: College Station, TX, USA, 1978. [Google Scholar]
- Serviço Nacional de Informação dos Recursos Hídricos. Available online: http://snirh.apambiente.pt/ (accessed on 30 November 2017).
- Ministry of Agriculture. Código das Boas Práticas Agrícolas Para a Protecção da Água Contra a Poluição de Nitratos de Origem Agrícola; MADRP: Lisboa, Portugal, 1997. (In Portuguese)
- Galván, L.; Olías, M.; Fernandez de Villarán, R.; Domingo Santos, J.M.; Nieto, J.M.; Sarmiento, A.M.; Cánovas, C.R. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of transported pollutant load. J. Hydrol. 2009, 377, 445–454. [Google Scholar] [CrossRef]
- Perrin, J.; Ferrant, S.; Massuel, S.; Dewandel, B.; Maréchal, J.C.; Aulong, S.; Ahmed, S. Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model. J. Hydrol. 2012, 460–461, 143–155. [Google Scholar] [CrossRef]
- Brown, L.C.; Barnwell, T.O., Jr. The Enhanced Water Quality Models QUAL2E and QUAL2E-UNCAS Documentation and User Manual; EPA Document EPA/600/3-87/007; USEPA: Athens, GA, USA, 1987.
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Fohrer, N.; Eckhardt, K.; Haverkamp, S.; Frede, H.G. Applying the SWAT Model as a Decision Support Tool for Land Use Concepts in Peripheral Regions in Germany. In Sustaining the Global Farm, Selected Papers from the 10th International Soil Conservation Organization Meeting; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; Purdue: West Lafayette, IN, USA, 2001; pp. 994–999. [Google Scholar]
- Lillebø, A.I.; Morais, M.; Guilherme, P.; Fonseca, R.; Serafim, A.; Neves, R. Nutrient dynamics in Mediterranean temporary streams: A case study in Pardiela catchment (Degebe River, Portugal). Limnologica 2007, 37, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.W.; Shirmohammadi, A.; Montas, H.; Sadeghi, A. Evaluation of the SWAT model’s and nutrient components in the piedmont physiographic region of Maryland. Trans. ASAE 2004, 47, 1523–1538. [Google Scholar] [CrossRef]
- Gikas, G.D.; Yiannakopoulou, T.; Tsihrintzis, V.A. Modeling of nonpoint-source pollution in a Mediterranean drainage basin. Environ. Model. Assess. 2005, 11, 219–233. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Roxo, M.J.; Casimiro, P.C. Long Term Monitoring of Soil Erosion by Water, Vale Formoso Erosion Centre—Portugal’. Soil Conservation and Protection for Europe Project. Available online: http://eusoils.jrc.ec.europa.eu/projects/scape/uploads/97/Roxo_Casimiro.pdf (accessed on 12 August 2016).
- Bakker, M.M.; Govers, G.; van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Amate, J.I.; de Molina, M.G.; Fernández, D.S.; Gómez, J.A. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 2011, 142, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Cobelas, M.; Sánchez-Andrés, R.; Sánchez-Carrillo, S.; Angeler, D.G. Nutrient contents and export from streams in semiarid catchments of central Spain. J. Arid Environ. 2010, 74, 933–945. [Google Scholar] [CrossRef]
- Salvia-Castellví, M.; Iffly, J.F.; Borght, P.V.; Hoffmann, L. Dissolved and particulate nutrient export from rural catchments: A case study from Luxembourg. Sci. Total Environ. 2005, 344, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Nutrient losses from a vineyard soil in Northeastern Spain caused by an extraordinary rainfall event. Catena 2004, 55, 79–90. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain). Agric. Ecosyst. Environ. 2006, 113, 356–363. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Peña-Monné, J.L.; de Luis, M. A review of daily soil erosion in Western Mediterranean areas. Catena 2007, 71, 193–199. [Google Scholar] [CrossRef]
Land Use | Area | |
---|---|---|
(km2) | (%) | |
Olive trees | 21 | 35% |
Annual crops—Rotation 2 | 18 | 30% |
Agro-forestry of holm-oaks (Pasture/“Montado”) | 11 | 19% |
Agro-forestry of holm oaks (Forest/ “Montado”) | 7 | 11% |
Annual crops—Rotation 1 | 2 | 3% |
Water | 1 | 2% |
Urban area | <1 | <1% |
Total | 61 | 100% |
Data Type | Description | Origin | Resolution | Period | Frequency |
---|---|---|---|---|---|
DTM | SRTM Digital Elevation | NASA | 90 m | - | - |
Land Use | Corine Land Cover 2000 | EEA | 1:100,000 | 1999–2002 | - |
Soil Texture | European Soil database | JRC, EU | 1:100,0000 | 1996 | - |
Precipitation | Daily input | Valada and Sobral da Adiça stations, National Water Institute [33] | - | 1980–2011 | Daily |
Other weather data | Temperature, relative humidity, solar radiation, and wind speed monthly averages for weather generator (1980–2000) and daily data (2000–2011) | Serpa station, National Meteorology Institute, and Valada, Sobral da Adiça and Monte da Torre stations, National Water Institute [33] | - | Variant for monthly averages and2000–2011 for daily data | Monthly averages and daily data after 2000 |
Agricultural Practice | Crop | |||
---|---|---|---|---|
Wheat and Barley | Oats | Sunflower | Olive Trees | |
Planting | November | October | April | - |
Fertilization | November (20 kgN ha−1) November (18 kgP ha−1) January (50 kgN ha−1) February (20 kgN ha−1) | March (40–80 kgN ha−1) | April (22 kgP ha−1) | April to July (24–60 kgN ha−1) |
Harvest | June | June | September | - |
Type | Number | Annual Load | |
---|---|---|---|
Nitrogen (tonN year−1) | Phosphorus (tonP year−1) | ||
cattle | 602 | 34 | 5 |
sheep | 4365 | 78 | 13 |
Data Type | Station | Origin | Period | Frequency |
---|---|---|---|---|
Reservoir Inflow: | ||||
Reservoir Discharges | Enxoé Reservoir (26M/01A) | National Water Institute [33] | 2005–2009 | Monthly |
Precipitation | Herdade da Valada (26M/01C), Sobral Adiça (25N/01UG) | National Water Institute [33] | 1980–2011 | Daily |
Evaporation | Herdade da Valada (26M/01C), Monte da Torre | National Water Institute [33] | 2001–2011 | Daily |
Erosion: | ||||
Erosion rates | Two plots in two main land uses. Volume and solids concentrations collected | Measured | 2010–2011 | Weekly to monthly |
Water quality in river: | ||||
Nutrient | Two stations in the two main tributaries | Measured | 2010–2011 | Weekly to monthly |
Parameter Description | SWAT Name | SWAT File | Default Value | Calibrated Value |
---|---|---|---|---|
Hydrodynamic: | ||||
Groundwater delay (days) | GW_DELAY | .gw | 31 | 3 |
Base flow recession alpha factor (days) | ALPHA_BF | .gw | 0.048 | 1 |
Water Quality: | ||||
Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing | SPCON | .bsn | 0.0001 | 0.00005 |
Organic phosphorus settling rate in the reach at 20 °C (day−1) | RS5 | .swq | 0.05 | 0.35 |
Benthic (sediment) source rate for dissolved phosphorus in the reach at 20 °C (mg dissolved P m−2·day−1) | RS2 | .swq | 0.05 | 0.5 |
Benthic source rate for NH4-N in the reach at 20 °C (mg NH4-N m−2·day−1) | RS3 | .swq | 0.5 | 10 |
Rate constant for hydrolysis of organic N to NH4 in the reach at 20 °C (day−1) | BC3 | .swq | 0.21 | 0.25 |
Rate constant for biological oxidation of NH4 to NO2 in the reach at 20 °C (day−1) | BC1 | .swq | 0.55 | 2.0 |
Rate constant for biological oxidation of NO2 to NO3 in the reach at 20 °C (day−1] | BC2 | .swq | 1.1 | 3.0 |
Rate constant for mineralization of organic P to dissolved P in the reach at 20 °C (day−1) | BC4 | .swq | 0.35 | 0.01 |
Parameter | Period | Data Average | Model Average | RMSE | R2 | Nash-Sutcliffe Model Efficiency |
---|---|---|---|---|---|---|
Flow: | ||||||
Monthly Reservoir Inflow | 1996–2009 | 0.24 hm3 month−1 | 0.24 hm3 month−1 | 0.21 hm3 month−1 | 0.78 | 0.77 |
Slope Erosion: | ||||||
Annual erosion rates | 2010–2011 | 0.1–0.2 ton ha−1 | 0.35 ton ha−1 | - | - | - |
River Water quality: | ||||||
Monthly Total N Load | 2010–2011 | 0.62 tonN month−1 | 0.50 tonN month−1 | 0.46 tonN month−1 | 0.69 | 0.65 |
Monthly Total Suspended Solids Load | 2010–2011 | 1.86 tonTSS month−1 | 1.80 tonTSS month−1 | 2.23 tonTSS month−1 | 0.42 | 0.19 |
Monthly Total P Load | 2010–2011 | 0.034 tonP month−1 | 0.030 tonP month−1 | 0.025 tonP month−1 | 0.63 | 0.62 |
N of Days to Transport 90% of Annual Load | |||
---|---|---|---|
Total N | Total P | TSS | |
Average | 12 | 14 | 8 |
Maximum | 28 | 27 | 23 |
Minimum | 1 | 1 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, D.; Neves, R.; Branco, M.A.; Prazeres, Â.; Rodrigues, S.; Gonçalves, M.C.; Ramos, T.B. Assessing Water and Nutrient Long-Term Dynamics and Loads in the Enxoé Temporary River Basin (Southeast Portugal). Water 2019, 11, 354. https://doi.org/10.3390/w11020354
Brito D, Neves R, Branco MA, Prazeres Â, Rodrigues S, Gonçalves MC, Ramos TB. Assessing Water and Nutrient Long-Term Dynamics and Loads in the Enxoé Temporary River Basin (Southeast Portugal). Water. 2019; 11(2):354. https://doi.org/10.3390/w11020354
Chicago/Turabian StyleBrito, David, Ramiro Neves, Maria A. Branco, Ângela Prazeres, Sara Rodrigues, Maria C. Gonçalves, and Tiago B. Ramos. 2019. "Assessing Water and Nutrient Long-Term Dynamics and Loads in the Enxoé Temporary River Basin (Southeast Portugal)" Water 11, no. 2: 354. https://doi.org/10.3390/w11020354
APA StyleBrito, D., Neves, R., Branco, M. A., Prazeres, Â., Rodrigues, S., Gonçalves, M. C., & Ramos, T. B. (2019). Assessing Water and Nutrient Long-Term Dynamics and Loads in the Enxoé Temporary River Basin (Southeast Portugal). Water, 11(2), 354. https://doi.org/10.3390/w11020354