A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko Theory for Continental-Scale Applications in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Budyko Theory
2.2.1. Potential Evapotranspiration
2.2.2. Actual Evapotranspiration
2.3. The Multi-Dimensional Classification Framework
3. Results and Discussion
3.1. General Classification Results
3.2. Effects of Hydrothermal Relationships on Sub-Region Classification
3.3. Hydro-Climatic Characteristics of the Sub-Regions
3.3.1. Humid Zone
3.3.2. Semi-Humid Zone
3.3.3. Semi-Arid Zone
3.3.4. Arid Zone
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ran, Y.; Xie, J.; Li, X. Socio-economic development and its effects on the ecological environment of the Yellow River Source Zone. In Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone; Springer: Berlin, Germany, 2016; pp. 331–351. [Google Scholar]
- McDonnell, J.J.; Woods, R. On the need for catchment classification. J. Hydrol. 2004, 299, 2–3. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; Woods, R.A. Catchment Classifification and Hydrologic Similarity. Geogr. Compet. 2007, 1, 901–931. [Google Scholar] [CrossRef]
- Troch, P.A.; Lahmers, T.; Meira, A.; Mukherjee, R.; Pedersen, J.W.; Roy, T.; Valdés-Pineda, R. Catchment coevolution: A useful framework for improving predictions of hydrological change. Water Resour. Res. 2015, 51, 4903–4922. [Google Scholar] [CrossRef]
- Zeng, R.; Cai, X. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors. Adv. Water Resour. 2015, 79, 51–60. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.T.; Lin, L.; Wang, A.; Chen, X. Exploring hydrologically similar catchments in terms of the physical characteristics of upstream regions. Hydrol. Res. 2017. [Google Scholar] [CrossRef]
- Abrahams, A.D. Channel networks: A geomorphological perspective. Water Resour. Res. 1984, 20, 161–188. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Jones, J.A.; Creed, I.F.; Hatcher, K.L.; Warren, R.J.; Adams, M.B.; Benson, M.H.; Boose, E.; Brown, W.A.; Campbell, J.L.; Covich, A.; et al. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. Bioscience 2012, 62, 390–404. [Google Scholar] [CrossRef]
- Fang, J.; Song, Y.; Liu, H.; Piao, S. Vegetation-climate relationship and its application in the division of vegetation zone in China. J. Integr. Plant Biol. 2002, 44, 1105–1122. [Google Scholar]
- Troch, P.A.; Carrillo, G.; Sivapalan, M.; Wagener, T. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution. Hydrol. Earth Syst. Sci. 2013, 17, 2209–2217. [Google Scholar] [CrossRef]
- Trancoso, R.; Larsen, J.R.; Mcalpine, C.; Mcvicar, T.R.; Phinn, S. Linking the Budyko framework and the Dunne diagram. J. Hydrol. 2016, 535, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Alimohammadi, N. Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resour. Res. 2012, 48, W05546. [Google Scholar] [CrossRef]
- Fernandez, R.; Sayama, T. Hydrological recurrence as a measure for large river basin classifification and process understanding. Hydrol. Earth Syst. Sci. 2015, 19, 1919–1942. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 259–263. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Woods, R.A.; Freer, J.E. A quantitative hydrological climate classifification evaluated with independent streamflflow data. Water Resour. Res. 2018, 54, 5088–5109. [Google Scholar] [CrossRef]
- Abella, S.R.; Shelburne, V.B.; Macdonald, N.W. Multifactor classification of forest landscape ecosystems of Jocassee Gorges, southern Appalachian Mountains, South Carolina. Can. J. Vet. Res. 2003, 33, 1933–1946. [Google Scholar] [CrossRef]
- Stadler, S.J. Aridity indexes. In The Encyclopedia of Climatology, Encyclopedia of Earth Sciences; Oliver, J.E., Fairbridge, R.W., Eds.; Nostrand Reinhold Goes: New York, NY, USA, 1987; Volume XI, pp. 102–107. [Google Scholar]
- Penman, H.L. Estimating evaporation. Eos Trans. AGU 1956, 37, 43–50. [Google Scholar] [CrossRef]
- McCulloch, J.S.G. Tables for the rapid compution of the Penman estimate of evaporation. East Afr. Agric. For. J. 1965, 30, 286–295. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. The water balance. Publ. Climatol. 1955, 8, 1–104. [Google Scholar]
- Holdridge, L.R. Determination of World Plant Formations from Simple Climatic Data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef]
- Kira, T. Forest ecosystems of East and Southeast Asia in global perspective. Ecol. Res. 1991, 6, 185–200. [Google Scholar] [CrossRef]
- Budyko, M.I. Methods for Determining the Components of the Heat Balance, Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Botzan, T.M.; Mariño, M.A.; Necula, A.I. Modified de martonne aridity index: Application to the Napa basin, California. Phys. Geogr. 1998, 19, 55–70. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Wu, S.H.; Yin, Y.H.; Zheng, D. Study on dry and wet conditions of land surface in China in recent 30 years. Sci. China 2005, 35, 276–283. (in Chinese). [Google Scholar]
- Sawicz, K.A.; Kelleher, C.; Wagener, T.; Troch, P.; Sivapalan, M.; Carrillo, G. Characterizing hydrologic change through catchment classification. Hydrol. Earth Syst. Sci. 2014, 18, 6599–6627. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Sivapalan, M.; Woods, R.A.; Savenije, H.H.G. Patterns of similarity of seasonal water balances: A window into streamflflow variability over a range of time scales. Water Resour. Res. 2014, 50, 5638–5661. [Google Scholar] [CrossRef]
- Addor, N.; Nearing, G.; Prieto, C.; Newman, A.J.; Le Vine, N.; Clark, M.P. Selection of hydrological signatures for large-sample hydrology. Water Resour. Res. 2018. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Ni, G.; Lei, Z. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour. Res. 2007, 43, 436–451. [Google Scholar] [CrossRef]
- Gunkel, A.; Lange, J. Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. J. Hydrol. 2017, 12, 136–149. [Google Scholar] [CrossRef]
- Peel, M.C.; Mcmahon, T.A.; Finlayson, B.L. Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resour. Res. 2010, 46, 2095–2170. [Google Scholar] [CrossRef]
- Yang, D.W.; Shao, W.W.; Yeh, P.J.F.; Yang, H.B.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009, 45, 450–455. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci. 2006, 3, 983–995. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; Mcvicar, T.R. Can dynamic vegetation information improve the accuracy of Budyko’s hydrological model. J. Hydrol. 2010, 390, 23–34. [Google Scholar] [CrossRef]
- Li, D.; Pan, M.; Cong, Z.; Zhang, L.; Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013, 49, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophys. Res. Lett. 2015, 43, 1140–1148. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Mcvicar, T.R.; Yang, D. An analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. Water Resour. Res. 2018, 54, 519–537. [Google Scholar] [CrossRef]
- Gao, M.; Chen, X.; Liu, J.; Zhang, Z. Regionalization of annual runoff characteristics and its indication of co-dependence among hydro-climate–landscape factors in Jinghe River Basin, China. Stoch. Environ. Res. Risk Assess. 2017, 4, 1–18. [Google Scholar] [CrossRef]
- Milly, P.C.D. An analytic solution of the stochastic storage problem applicable to soil water. Water Resour. Res. 1993, 29, 3755–3758. [Google Scholar] [CrossRef]
- Potter, N.J.; Zhang, L.; Milly, P.C.D.; Mcmahon, T.A.; Jakeman, A.J. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resour. Res. 2005, 41, W06007. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; Mcvicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Shao, Q.; Traylen, A.; Zhang, L. Nonparametric method for estimating the effects of climatic and catchment characteristics on mean annual evapotranspiration. Water Resour. Res. 2012, 48, W03517. [Google Scholar] [CrossRef]
- Li, D. Assessing the impact of interannual variability of precipitation and potential evaporation on evapotranspiration. Adv. Water Resour. 2014, 70, 1–11. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrol. Earth Syst. Sci. 2017, 21, 1–25. [Google Scholar] [CrossRef]
- Qiu, N.; Chen, X.; Hu, Q.; Liu, J.T.; Huang, R.; Gao, M. Hydro-stochastic interpolation coupling with the Budyko approach for prediction of mean annual runoff. Hydrol. Earth Syst. Sci. 2018, 22, 2891–2901. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.P. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. (in Chinese). [Google Scholar]
- Merz, R.; Blöschl, G. A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resour. Res. 2009, 45, 639–643. [Google Scholar] [CrossRef]
- Greve, P.; Gudmundsson, L.; Orlowsky, B.; Seneviratne, S.I. Introducing a probabilistic Budyko framework. Geophys. Res. Lett. 2015, 42, 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- The 90 m Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) Data. Available online: http://www.gscloud.cn/sources/ (accessed on 17 March 2015).
- FAO Classified Soil Map of One Kilometer in China. Available online: http://www.soil.csdb.cn/map/ (accessed on 29 September 2015).
- Spatial Distribution Data of Soil Texture in China. Available online: http://www.resdc.cn/DOI/ (accessed on 7 December 2015).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage; Food and Agricultural Organization: Rome, Italy, 1998; p. 56. [Google Scholar]
- Gao, G.; Chen, D.; Xu, C.Y.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res. 2007, 112, D11120. [Google Scholar] [CrossRef]
- Sun, F. Study on Watershed Evapotranspiration Based on the Budyko Hypothesis. Ph.D. Thesis, Tsinghua University, Beijing, China, 2007. [Google Scholar]
- Winter, T.C. The concept of hydrologic landscapes. J. Am. Water Resour. Assoc. 2010, 37, 335–349. [Google Scholar] [CrossRef]
- Cheng, L.; Yaeger, M.; Viglione, A.; Coopersmith, E. Exploring the physical controls of regional patterns of flow duration curves—Part 1: Insights from statistical analyses. Hydrol. Earth Syst. Sci. 2012, 16, 4435–4446. [Google Scholar] [CrossRef]
- Yuan, Q.Z.; Wu, S.H.; Dai, E.B.; Zhao, D.S.; Zhang, X.R.; Qi, R.P. Spatiotemporal variations of dry-wet climate over period of 1961~2015 in China. Sci. Sin. Terrae 2017, 47, 1339–1348. (in Chinese). [Google Scholar]
- Zheng, J.Y.; Bian, J.J.; Ge, Q.S.; Hao, Z.X.; Yin, Y.H.; Liao, Y.M. The climate regionalization in China for 1981–2010. Chin. Sci. Bull. 2013, 58, 3088–3099. (In Chinese) [Google Scholar]
- Zhu, G.R.; Li, Y. Types and changes of Chinese climate zones from 1961 to 2013 based on Köppen climate classification. Arid Land Geogr. 2015, 38, 1121–1132. (In Chinese) [Google Scholar]
- The VCG Website. Available online: https://www.vcg.com/ (accessed on 15 April 2018).
Climate Zone | Sub-Region | Wind Speed (m/s) | Altitude (m) | Temperature (°C) | Hours of Sun Recorded Annually (h) | E0 (mm) | Ea (mm) | P (mm) | DI | EI |
---|---|---|---|---|---|---|---|---|---|---|
Humid zone | C11 | 1.6 | 833 | 20.0 | 2131 | 1195 | 841 | 1595 | 0.77 | 0.54 |
C12 | 2.6 | 173 | 19.9 | 1872 | 1151 | 934 | 1717 | 0.69 | 0.56 | |
C13 | 2.3 | 330 | 17.9 | 1751 | 1031 | 877 | 1468 | 0.73 | 0.61 | |
C14 | 2.3 | 472 | 15.4 | 1690 | 931 | 829 | 1300 | 0.76 | 0.67 | |
C15 | 1.7 | 572 | 14.8 | 1402 | 845 | 779 | 1090 | 0.79 | 0.73 | |
Semi-humid zone | C21 | 2.0 | 1780 | 16.0 | 2403 | 1266 | 660 | 1029 | 1.23 | 0.64 |
C22 | 2.1 | 1489 | 12.7 | 2277 | 1086 | 634 | 839 | 1.31 | 0.76 | |
C23 | 2.7 | 792 | 13.5 | 2272 | 1097 | 662 | 807 | 1.37 | 0.82 | |
C24 | 2.3 | 624 | 11.7 | 2100 | 972 | 658 | 774 | 1.27 | 0.85 | |
C25 | 2.4 | 918 | 6.0 | 2252 | 868 | 630 | 703 | 1.25 | 0.90 | |
C26 | 2.5 | 1799 | 2.6 | 2316 | 795 | 607 | 660 | 1.22 | 0.93 | |
Semi-arid zone | C31 | 2.3 | 860 | 11.2 | 2624 | 1150 | 473 | 570 | 2.12 | 0.84 |
C32 | 2.7 | 646 | 9.5 | 2609 | 1104 | 474 | 525 | 2.17 | 0.91 | |
C33 | 2.7 | 947 | 6.0 | 2659 | 1027 | 447 | 470 | 2.33 | 0.96 | |
C34 | 2.7 | 2620 | 1.9 | 2632 | 952 | 444 | 449 | 2.26 | 0.99 | |
Arid zone | C41 | 2.8 | 1663 | 5.9 | 2999 | 1234 | 178 | 179 | 8.21 | 1.00 |
C42 | 2.5 | 1387 | 9.5 | 3043 | 1443 | 47 | 47 | 33.23 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xu, S.; Han, X.; Chen, X.; He, R. A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko Theory for Continental-Scale Applications in China. Water 2019, 11, 319. https://doi.org/10.3390/w11020319
Liu J, Xu S, Han X, Chen X, He R. A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko Theory for Continental-Scale Applications in China. Water. 2019; 11(2):319. https://doi.org/10.3390/w11020319
Chicago/Turabian StyleLiu, Jintao, Shanshan Xu, Xiaole Han, Xi Chen, and Ruimin He. 2019. "A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko Theory for Continental-Scale Applications in China" Water 11, no. 2: 319. https://doi.org/10.3390/w11020319
APA StyleLiu, J., Xu, S., Han, X., Chen, X., & He, R. (2019). A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko Theory for Continental-Scale Applications in China. Water, 11(2), 319. https://doi.org/10.3390/w11020319