Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments
Abstract
:1. Introduction
2. Indoor Rainfall-Runoff Experiments
2.1. Experiment Setups
2.2. Experimental Measurements and Processes
2.3. Data Obtained
3. Results and Discussion
3.1. Relation between Rainfall Rate and SR Depths
3.2. Relation between SM and Runoff
3.3. Response Times
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Penna, D.; Tromp-van Meerveld, H.J.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef]
- Scaife, C.I.; Band, L.E. Nonstationarity in threshold response of stormflow in southern Appalachian headwater catchments. Water Resour. Res. 2017, 53, 6579–6596. [Google Scholar] [CrossRef]
- Detty, J.M.; McGuire, K.J. Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resour. Res. 2010, 46, W07525. [Google Scholar] [CrossRef]
- Castillo, V.M.; Gómez-Plaza, A.; Martínez-Mena, M. The role of antecedent soil water content in the runoff response of semiarid catchments: A simulation approach. J. Hydrol. 2003, 284, 114–130. [Google Scholar] [CrossRef]
- Zehe, E.; Becker, R.; Bárdossy, A.; Plate, E. Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation. J. Hydrol. 2005, 315, 183–202. [Google Scholar] [CrossRef]
- Tromp-van Meerveld, H.J.; Mcdonnell, J.J. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour. Res. 2006, 42, W02410. [Google Scholar] [CrossRef]
- Weiler, M.; Mcdonnell, J.J. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour. Res. 2007, 43, W03403. [Google Scholar] [CrossRef]
- Zehe, E.; Sivapalan, M. Threshold behaviour in hydrological systems as (human) geo-ecosystems: Manifestations, controls, implications. Hydrol. Earth Syst. Sci. 2009, 13, 1273–1297. [Google Scholar] [CrossRef]
- Phillips, J.D. Sources of nonlinearity and complexity in geomorphic systems. Prog. Phys. Geogr. 2003, 27, 1–23. [Google Scholar] [CrossRef]
- Bronstert, A.; Bárdossy, A. The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale. Hydrol. Earth Syst. Sci. 1999, 3, 505–516. [Google Scholar] [CrossRef]
- Zehe, E.; Blöschl, G. Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions. Water Resour. Res. 2004, 40, W10202. [Google Scholar] [CrossRef]
- Blöschl, G.; Zehe, E. On hydrological predictability. Hydrol. Process. 2005, 19, 3923–3929. [Google Scholar] [CrossRef]
- Zehe, E.; Graeff, T.; Morgner, M.; Bauer, A.; Bronstert, A. Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrol. Earth Syst. Sci. 2010, 14, 873–889. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J. Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities. Water Resour. Res. 2010, 46, W10543. [Google Scholar] [CrossRef]
- Radatz, T.F.; Thompson, A.M.; Madison, F.W. Soil moisture and rainfall rate thresholds for runoff generation in southwestern Wisconsin agricultural watersheds. Hydrol. Process. 2013, 27, 3521–3534. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B. The Tarrawarra data set: Soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resour. Res. 1998, 34, 2765–2768. [Google Scholar] [CrossRef]
- van Meerveld, I.T.; McDonnell, J.J. Comment to “Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes, Journal of Hydrology 286: 113–134”. J. Hydrol. 2005, 303, 307–312. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T. Empirical and conceptual approaches for soil moisture estimation in view of event-based rainfall-runoff modeling. In Proceedings of the 10th Conference of the Euromediterranean, Network of Experimental and Representative Basins (ERB), Turin, Italy, 13–17 October 2004. [Google Scholar]
- James, A.L.; Roulet, N.T. Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrol. Process. 2007, 21, 3391–3408. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, F.; Li, C.; Zhang, L.; Liu, J.; Mu, W.; Wang, H. Soil moisture dynamics and effects on runoff generation at small hillslope scale. J. Hydrol. Eng. 2015, 20, 05014024. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Merz, R.; Blöschl, G.; Carton, A. Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol. 2009, 375, 312–325. [Google Scholar] [CrossRef]
- Latron, J.; Gallart, F. Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Estern Pyrenees). J. Hydrol. 2008, 358, 206–220. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, H.; Nearing, M.A. Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. Hydrol. Earth Syst. Sci. 2011, 15, 3171–3179. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Runoff generation in a steep, soil-mantled lanscape. Water Resour. Res. 2002, 38, 1168. [Google Scholar] [CrossRef]
- Blume, T.; Zehe, E.; Bronstert, A. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes. Hydrol. Earth Syst. Sci. 2009, 13, 1215–1233. [Google Scholar] [CrossRef]
- Meyles, E.W.; Williams, A.G.; Ternan, J.L.; Anderson, J.M.; Dowd, J.F. The influence of grazing on vegetation, soil properties and stream discharge in a small Dartmoor catchment, southwest England, UK. Earth Surf. Process. Landf. 2006, 31, 622–631. [Google Scholar] [CrossRef]
- Dunne, T. Field studies of hillslope flow processes. In Hillslope Hydrology; Kirkby, M.J., Ed.; Wiley: Chichester, UK, 1978; pp. 227–293. [Google Scholar]
- Xie, Z.; Su, F.; Liang, X.; Zeng, Q.; Hao, Z.; Guo, Y. Applications of a surface runoff model with Horton and Dunne runoff for VIC. Adv. Atmos. Sci. 2003, 20, 165–172. [Google Scholar]
- Minet, J.; Laloy, E.; Lambot, S.; Vanclooster, M. Effect of high-resolution spatial soil moisture variability on simulated runoff response using a distributed hydrologic model. Hydrol. Earth Syst. Sci. 2011, 15, 1323–1338. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res. 1970, 6, 1296–1311. [Google Scholar] [CrossRef]
- Zhao, R.-J.; Zuang, Y.-L.; Fang, L.-R.; Liu, X.-R.; Zhang, Q.-S. The Xinanjiang model. In Proceedings of the Oxford Symposium, Oxford, UK, 15–18 April 1980; pp. 351–356. [Google Scholar]
- Haga, H.; Matsumoto, Y.; Matsutani, J.; Fujita, M.; Nishida, K.; Sakamoto, Y. Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment. Water Resour. Res. 2005, 41, W12410. [Google Scholar] [CrossRef]
- Schneiderman, E.M.; Steenhuis, T.S.; Thongs, D.J.; Easton, Z.M.; Zion, M.S.; Neal, A.L.; Mendoza, G.F.; Todd Walter, M. Incorporating variable source area hydrology into a curve-number-based watershed model. Hydrol. Process. 2007, 21, 3420–3430. [Google Scholar] [CrossRef]
- Leitinger, G.; Ruggenthaler, R.; Markart, G.; Klebinder, K.; Schöberl, F.; Hammerle, A. Quantification of soil moisture effects on runoff formation at the hillslope scale. J. Irrig. Drain. Eng. 2015, 141, 5015001. [Google Scholar]
- Dekker, L.W.; Oostindie, K.; Ritsema, C.J. Exponential increase of publications related to soil water repellency. Aust. J. Soil Res. 2005, 43, 403–441. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res. 1994, 30, 2507–2517. [Google Scholar] [CrossRef]
- Dekker, L.W.; Doerr, K.; Oostindie, K.; Ziogas, A.K.; Ritsema, C.J. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J. 2001, 65, 1667–1674. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J.; Oostindie, K.; Morre, D.; Wesseling, J.G. Methods for determining soil water repellency on field-moist samples. Water Resour. Res. 2009, 45, W00D33. [Google Scholar] [CrossRef]
- Zhao, N.N.; Yu, F.L.; Li, C.Z.; Wang, H.; Liu, J.; Mu, W.B. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions. Water 2014, 6, 2671–2689. [Google Scholar] [CrossRef]
- Weiler, M.; McDonnell, J. Virtual experiments: A new approach for improving process conceptualization in hillslope hydrology. J. Hydrol. 2004, 285, 3–18. [Google Scholar] [CrossRef]
- Cheng, Q.B.; Chen, X.; Zhao, L.L.; Ling, M.H. Dynamic coupled modeling and infiltration experiment on soil water in saturated and unsaturated zones. J. Hohai Univ. 2009, 37, 284–289. (In Chinese) [Google Scholar]
- Kargas, G.; Soulis, K.X. Performance analysis and calibration of a new low-cost capacitance soil moisture sensor. J. Irrig. Drain. Eng. 2012, 138, 632–641. [Google Scholar] [CrossRef]
- Czarnomski, N.M.; Moore, G.W.; Pypker, T.G.; Licata, J.; Bond, B.J. Precision and accuracy of three alternative instruments for measuring soil water content in two forest soils of the Pacific Northwest. Can. J. For. Res. 2005, 35, 1867–1876. [Google Scholar] [CrossRef]
- Starr, J.L.; Paltineanu, I.C. Methods for Measurement of Soil Water Content: Capacitance Devices; Agricultural Research Service (ARS), U.S. Department of Agriculture: Washington, DC, USA, 2002.
- Kirstetter, G.; Hu, J.; Delestre, O.; Darboux, F.; Lagrée, P.Y.; Popinet, S.; Fullana, J.M.; Josserand, C. Modeling rain-driven overland flow: Empirical versus analytical friction terms in the shallow water approximation. J. Hydrol. 2016, 536, 1–9. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resour. Res. 2009, 45, W01405. [Google Scholar] [CrossRef]
- Blume, T.; Zehe, E.; Bronstert, A. Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrol. Sci. J. 2007, 52, 843–862. [Google Scholar] [CrossRef]
- Langhans, C.; Govers, G.; Diels, J.; Leys, A.; Clymans, W.; Van de Putte, A.; Valckx, J. Experimental rainfall-runoff data: the concept of infiltration capacity needs re-thinking. In Proceedings of the EGU General Assembly 2009, Vienna, Austria, 19–24 April 2009; p. 4496. [Google Scholar]
- Gao, X.; Wu, P.; Zhao, X.; Shi, Y.; Wang, J.; Zhang, B. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena 2011, 87, 357–367. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.J.; Wang, J.; Chen, L.D. Spatiotemporal prediction of SM using multiple-linear regression in a small catchment of The Loess Plateau, China. Catena 2003, 54, 173–195. [Google Scholar] [CrossRef]
- Yi, C.Q.; Fan, J. Application of hydrus-1d model to provide antecedent soil water contents for analysis of runoff and soil erosion from a slope on the loess plateau. Catena 2016, 139, 1–8. [Google Scholar]
- Redding, T.E.; Devito, K.J. Lateral flow thresholds for aspen forested hillslopes on the Western Boreal Plain, Alberta, Canada. Hydrol. Process. 2008, 22, 4287–4300. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Seasonal hydrologic response at various spatial scales in a small forested catchment, Hitachi Ohta, Japan. J. Hydrol. 1995, 168, 227–250. [Google Scholar] [CrossRef]
- Whipkey, R. Subsurface stormflow from forested slopes. Int. Assoc. Sci. Hydrol. Bull. 1965, 10, 74–85. [Google Scholar] [CrossRef]
- Mosley, M.P. Streamflow generation in a forested watershed, New Zealand. Water Resour. Res. 1979, 15, 795–806. [Google Scholar] [CrossRef]
- Lindenmaier, F.; Zehe, E.; Helms, M.; Evdakov, O.; Ihringer, J. Effect of soil shrinkage on runoff generation in micro and mesoscale catchments. In Proceedings of the Symposium S7, 7th IAHS Scientific Assembly, Foz do Iguacu, Brazil, 3–9 April 2005; pp. 305–317. [Google Scholar]
- Zehe, E.; Elsenbeer, H.; Lindenmaier, F.; Schulz, K.; Blöschl, G. Patterns of predictability in hydrological threshold systems. Water Resour. Res. 2007, 43, W07434. [Google Scholar] [CrossRef]
- Langhans, C.; Govers, G.; Diels, J.; Leys, A.; Clymans, W.; Van de Putte, A.; Valckx, J. Experimental rainfall-runoff data: Reconsidering the concept of infiltration capacity. J. Hydrol. 2011, 399, 255–262. [Google Scholar] [CrossRef]
- Morin, J.; Keren, R.; Benjamini, Y.; Ben-Hur, M.; Shainberg, I. Water infiltration as affected by soil crust and moisture profile. Soil Sci. 1989, 148, 53–59. [Google Scholar] [CrossRef]
- Cantón, Y.; Domingo, F.; Solé-Benet, A.; Puigdefábregas, J. Hydrological and erosion response of a badlands system in semiarid SE Spain. J. Hydrol. 2001, 252, 65–84. [Google Scholar] [CrossRef]
- Agassi, M.; Shainberg, I.; Morin, J. Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation. Soil Sci. Soc. Am. J. 2010, 45, 848–851. [Google Scholar] [CrossRef]
- Doerr, S.H.; Thomas, A.D. The role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal. J. Hydrol. 2000, 231–232, 134–147. [Google Scholar] [CrossRef]
- Gräff, T. Soil Moisture Dynamics and Soil Moisture Controlled Runoff Processes at Different Spatial Scales: From Observation to Modeling. Ph.D. Thesis, University of Potsdam, Berlin-Brandenburg, Germany, 2011. [Google Scholar]
- Hrnčíř, M.; Šanda, M.; Kulasová, A.; Císlerová, M. Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process. 2010, 24, 2248–2256. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Sand (%) | 75.5 |
Silt (%) | 21.5 |
Clay (%) | 3.0 |
Bulk density (g/cm3) | 1.4 |
Saturated water content (%) | 43.5 |
Field capacity (%) | 38.0 |
Wilting point (%) | 4.0 |
Total nitrogen (g/kg) | 0.26 |
Organic matter (g/kg) | 4.1 |
Saturated hydraulic conductivity (mm/min) | 0.47 |
Event | Date | Rainfall (mm) | Duration (min) | ASM at 10 cm (%) | SR (mm) | SSR (mm) | SSR/SR (-) | φe (-) |
---|---|---|---|---|---|---|---|---|
1 | 4 July 2016 | 64.7 | 60 | 40.0 | 11.8 | 50.3 | 4.3 | 0.96 |
2 | 10 July 2016 | 53.7 | 80 | 31.8 | 6.0 | 18.6 | 3.1 | 0.46 |
3 | 11 July 2016 | 40.9 | 60 | 35.6 | 3.8 | 24.7 | 6.5 | 0.70 |
4 | 12 July 2016 | 46.2 | 72 | 36.2 | 7.5 | 32.0 | 4.3 | 0.86 |
5 | 13 July 2016 | 36.5 | 66 | 36.1 | 4.0 | 30.5 | 7.6 | 0.94 |
6 | 14 July 2016 | 36.9 | 68 | 35.9 | 6.6 | 27.2 | 4.1 | 0.91 |
7 | 15 July 2016 | 38.5 | 70 | 35.8 | 5.7 | 25.3 | 4.4 | 0.81 |
8 | 16 July 2016 | 49.6 | 58 | 35.5 | 4.4 | 30.2 | 6.9 | 0.70 |
9 | 17 July 2016 | 48.1 | 56 | 36.2 | 5.0 | 37.4 | 7.5 | 0.88 |
10 | 18 July 2016 | 46.2 | 58 | 35.8 | 3.5 | 30.9 | 8.8 | 0.75 |
11 | 19 July 2016 | 46.8 | 54 | 36.1 | 5.2 | 21.2 | 4.1 | 0.56 |
12 | 20 July 2016 M | 55.3 | 68 | 37.8 | 10.0 | 54.5 | 2.9 | 0.71 |
13 | 20 July 2016 A | 48.3 | 56 | 39.3 | 9.0 | |||
14 | 21 July 2016 M | 49.7 | 64 | 37.4 | 6.8 | 55.7 | 4.3 | 0.73 |
15 | 21 July 2016 A | 44.7 | 56 | 39.0 | 6.2 | |||
16 | 22 July 2016 M | 41.0 | 64 | 37.6 | 6.3 | 48.6 | 4.2 | 0.74 |
17 | 22 July 2016 A | 40.4 | 56 | 39.5 | 5.3 | |||
18 | 23 July 2016 M | 47.5 | 60 | 37.5 | 7.5 | 57.2 | 4.7 | 0.76 |
19 | 23 July 2016 A | 44.1 | 54 | 38.9 | 4.7 | |||
20 | 24 July 2016 M | 47.6 | 60 | 37.7 | 4.8 | 74.3 | 6.1 | 0.93 |
21 | 24 July 2016 A | 45.1 | 54 | 39.3 | 7.4 | |||
22 | 25 July 2016 | 50.0 | 60 | 37.5 | 8.8 | 37.5 | 4.3 | 0.93 |
23 | 16 August 2017 | 48.8 | 46 | 26.8 | 6.6 | 17.2 | 2.6 | 0.49 |
24 | 25 August 2017 | 48.9 | 60 | 27.4 | 6.2 | 12.5 | 2.0 | 0.38 |
25 | 28 August 2017 | 49.4 | 90 | 29.5 | 0.2 | 28.7 | 143.5 | 0.58 |
26 | 10 April 2018 | 49.7 | 60 | 20.5 | 2.8 | 0 | 0 | 0.08 |
27 | 19 April 2018 | 50 | 60 | 23.6 | 4.7 | 6.1 | 1.3 | 0.22 |
28 | 26 April 2018 | 51.3 | 60 | 25.1 | 7.5 | 11.4 | 1.5 | 0.37 |
29 | 3 May 2018 | 49.8 | 60 | 27.2 | 8.2 | 14.3 | 1.8 | 0.45 |
30 | 7 May 2018 | 50.8 | 60 | 28.7 | 10.0 | 18.4 | 1.8 | 0.56 |
31 | 8 May 2018 | 49.9 | 60 | 29.7 | 10.0 | 20.0 | 2.0 | 0.60 |
32 | 10 May 2018 | 48.9 | 60 | 28.5 | 8.3 | 18.6 | 2.2 | 0.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Wang, W. Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments. Water 2019, 11, 296. https://doi.org/10.3390/w11020296
Song S, Wang W. Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments. Water. 2019; 11(2):296. https://doi.org/10.3390/w11020296
Chicago/Turabian StyleSong, Shuang, and Wen Wang. 2019. "Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments" Water 11, no. 2: 296. https://doi.org/10.3390/w11020296
APA StyleSong, S., & Wang, W. (2019). Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments. Water, 11(2), 296. https://doi.org/10.3390/w11020296