Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse
Abstract
:1. Introduction
2. Numerical Methods
3. Result
3.1. Collapse of a Single Bubble
3.2. Collapses of Multiple Bubbles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ohl, S.W.; Klaseboer, E.; Khoo, B.C. Bubbles with shock waves and ultrasound: A review. Interface Focus 2015, 5, 20150019. [Google Scholar] [CrossRef] [PubMed]
- Lordrayleigh, O.M.F.R.S. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 1917, 34, 94–98. [Google Scholar] [Green Version]
- Plesset, M.S. The Dynamics of Cavitation Bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Nigmatulin, R.; Khabeev, N. Dynamics of vapor-gas bubbles. Fluid Dyn. 1976, 11, 867–871. [Google Scholar] [CrossRef]
- Nigmatulin, R.; Khabeev, N. Heat exchange between a gas bubble and a liquid. Fluid Dyn. 1974, 9, 759–764. [Google Scholar] [CrossRef]
- Ida, M.; Naoe, T.; Futakawa, M. Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction. Phys. Rev. E 2007, 76, 046309. [Google Scholar] [CrossRef] [PubMed]
- Fuster, D.; Colonius, T. Modelling bubble clusters in compressible liquids. J. Fluid Mech. 2011, 688, 352–389. [Google Scholar] [CrossRef] [Green Version]
- Chahine, G.L. Numerical simulation of bubble flow interactions. J. Hydrodyn. Ser. B 2009, 21, 316–332. [Google Scholar] [CrossRef]
- Alloncle, A.; Dufresne, D.; Autric, M. Visualisation of laser-induced vapor bubbles and pressure waves. In Bubble Dynamics and Interface Phenomena; Springer: Dordrecht, The Netherlands, 1994; pp. 365–371. [Google Scholar]
- Brujan, E.A.; Keen, G.S.; Vogel, A.; Blake, J.R. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Ultrason. Sonochem. 2011, 18, 59–64. [Google Scholar] [CrossRef]
- Dular, M.; Coutier-Delgosha, O. Thermodynamic effects during growth and collapse of a single cavitation bubble. J. Fluid Mech. 2013, 736, 44–66. [Google Scholar] [CrossRef] [Green Version]
- Field, J.E. Experimental Studies of Bubble Collapse; Springer: Dordrecht, The Netherlands, 1994; pp. 17–31. [Google Scholar]
- Fujikawa, S.; Akamatsu, T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 1980, 97, 481–512. [Google Scholar] [CrossRef]
- Goh, B.H.T.; Ohl, S.W.; Klaseboer, E.; Khoo, B.C. Jet orientation of a collapsing bubble near a solid wall with an attached air bubble. Phys. Fluids 2014, 26, 221–240. [Google Scholar] [CrossRef]
- Isselin, J.C.; Alloncle, A.P.; Autric, M. On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena. J. Appl. Phys. 1998, 84, 5766–5771. [Google Scholar] [CrossRef]
- Kapahi, A.; Hsiao, C.T.; Chahine, G.L. Shock-Induced Bubble Collapse versus Rayleigh Collapse; IOP Publishing: Bristol, UK, 2015; p. 012128. [Google Scholar]
- Philipp, A.; Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 2000, 361, 75–116. [Google Scholar] [CrossRef]
- Shaw, S.J.; Schiffers, W.P.; Gentry, T.P.; Emmony, D.C. The interaction of a laser-generated cavity with a solid boundary. J. Acoust. Soc. Am. 2000, 107, 3065. [Google Scholar] [CrossRef] [PubMed]
- Shutler, N.D. A Photographic Study of the Dynamics and Damage Capabilities of Bubbles Collapsing Near Solid Boundaries. J. Fluids Eng. 1965, 87, 511. [Google Scholar] [CrossRef]
- Smith, W.R.; Wang, Q.X. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number. Phys. Fluids 2017, 29, 082112. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Yamanishi, Y.; Sato, K.; Moriyama, M. Measurement of bubble behavior and impact on solid wall induced by fiber-holmium: YAG laser. J. Flow Control Meas. Vis. 2015, 3, 135–143. [Google Scholar] [CrossRef]
- Supponen, O.; Kobel, P.; Obreschkow, D.; Farhat, M. The inner world of a collapsing bubble. Phys. Fluids 2015, 27, 94–98. [Google Scholar] [CrossRef]
- Zhang, S.; Duncan, J.H.; Chahine, G.L. The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 2006, 257, 147–181. [Google Scholar] [CrossRef]
- Wang, Z.; Pecha, R.; Gompf, B.; Eisenmenger, W. Single bubble sonoluminescence: Investigations of the emitted pressure wave with a fiber optic probe hydrophone. Phys. Rev. E 1999, 59, 1777. [Google Scholar] [CrossRef]
- Lauterborn, W.; Vogel, A. Shock Wave Emission by Laser Generated Bubbles; Springer: Berlin, Heidelberg, 2013; pp. 67–103. [Google Scholar]
- Lauterborn, W. Experimental investigation of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 1975, 72, 391–399. [Google Scholar] [CrossRef]
- Lauterborn, W.; Kurz, T. Physics of bubble oscillations. Rep. Prog. Phys. 2010, 73, 106501. [Google Scholar] [CrossRef]
- Vogel, A.; Lauterborn, W.; Timm, R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 2006, 206, 299–338. [Google Scholar] [CrossRef]
- Staudenraus, J.; Eisenmenger, W. Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics 1993, 31, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Avila, S.R. The acoustic pressure generated by the non-spherical collapse of laser-induced cavitation bubbles near a rigid boundary. In Proceedings of the 10th International Symposium on Cavitation, Baltimore, MD, USA, 14–16 May 2018. [Google Scholar]
- Merouan Hamdi, O.C.D. Measurements of the temperature variations during the growth and collapse of cavitation bubbles. In Proceedings of the 10th International Symposium on Cavitation, Baltimore, MD, USA, 14–16 May 2018. [Google Scholar]
- Fortes-Patella, R.; Challier, G.; Reboud, J.L.; Archer, A. Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface. J. Fluids Eng. 2014, 135, 011303. [Google Scholar] [CrossRef]
- Bui, T.T.; Ong, E.T.; Khoo, B.C.; Klaseboer, E.; Hung, K.C. A fast algorithm for modeling multiple bubbles dynamics. J. Comput. Phys. 2006, 216, 430–453. [Google Scholar] [CrossRef]
- Han, B.; Köhler, K.; Jungnickel, K.; Mettin, R.; Lauterborn, W.; Vogel, A. Dynamics of laser-induced bubble pairs. J. Fluid Mech. 2015, 771, 706–742. [Google Scholar] [CrossRef] [Green Version]
- Bremond, N.; Arora, M.; Ohl, C.D.; Lohse, D. Controlled multibubble surface cavitation. Phys. Rev. Lett. 2006, 96, 224501. [Google Scholar] [CrossRef]
- Wang, Q. Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 2014, 745, 509–536. [Google Scholar] [CrossRef]
- Chahine, G.L.; Duraiswami, R. Dynamical Interactions in a Multi-Bubble Cloud. ASME J. Fluids Eng. 1992, 114, 680–686. [Google Scholar] [CrossRef]
- Tomita, Y.; Robinson, P.B.; Tong, R.P.; Blake, J.R. Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 2002, 466, 259–283. [Google Scholar] [CrossRef]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. Shock wave emission from a cloud of bubbles. Soft Matter 2012, 8, 5777–5783. [Google Scholar] [CrossRef]
- Tiwari, A.; Pantano, C.; Freund, J.B. Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 2015, 775, 1–23. [Google Scholar] [CrossRef]
- Kling, C.L.; Hammitt, F.G. A photographic study of spark-induced cavitation bubble collapse. J. Borderl. Stud. 1970, 94, 75–90. [Google Scholar] [CrossRef]
- Vogel, A.; Lauterborn, W. Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics. Appl. Opt. 1988, 27, 1869–1876. [Google Scholar] [CrossRef]
- Ward, B.; Emmony, D.C. The Energies and Pressures of Acoustic Transients Associated with Optical Cavitation in Water. Opt. Acta Int. J. Opt. 1990, 37, 803–811. [Google Scholar] [CrossRef]
(mJ) | (J) | (%) | |
---|---|---|---|
1.5 | 3.94 | 352.2 | 10.73 |
1.65 | 3.90 | 418.1 | 12.74 |
1.85 | 3.97 | 543.8 | 16.57 |
2.0 | 3.94 | 564.2 | 17.19 |
2.5 | 4.08 | 608.8 | 18.55 |
3.0 | 3.95 | 579.3 | 17.65 |
3.5 | 4.01 | 630.1 | 19.20 |
4.0 | 4.10 | 620.6 | 18.91 |
12.5 | 4.36 | 961.3 | 29.29 |
(mJ) | (mJ) | (%) | |
---|---|---|---|
1.5 | 27.96 | 2.97 | 11.31 |
2.0 | 28.65 | 2.96 | 11.27 |
3.75 | 29.91 | 2.09 | 7.96 |
6.25 | 29.28 | 2.03 | 7.73 |
11.25 | 30.04 | 1.40 | 5.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, L.; Deng, J. Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse. Water 2019, 11, 247. https://doi.org/10.3390/w11020247
Zhang J, Zhang L, Deng J. Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse. Water. 2019; 11(2):247. https://doi.org/10.3390/w11020247
Chicago/Turabian StyleZhang, Jing, Lingxin Zhang, and Jian Deng. 2019. "Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse" Water 11, no. 2: 247. https://doi.org/10.3390/w11020247
APA StyleZhang, J., Zhang, L., & Deng, J. (2019). Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse. Water, 11(2), 247. https://doi.org/10.3390/w11020247