Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope of the Research
2.2. Governing Equations
2.3. Boundary Conditions and Discretization
2.4. Data Analysis
3. Results and Discussion
3.1. Main Hydraulic Characteristics for All Designs
3.2. Effect of the Slope and Discharge in the Reference Design D1
3.3. Effect of Modifications in the Reference Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Symbols and Abbreviations
References
- Godinho, H.; Godinho, A. Ecology and conservation of fish in southeastern Brazilian river basins submitted to hydroelectric impoundments. Acta Limnol. Bras. 1994, 5, 187–197. [Google Scholar]
- Santos, H.A.; Pompeu, P.S.; Vicentini, G.S.; Martinez, C.B. Swimming performance of the freshwater neotropical fish: Pimelodus maculatus Lacepède, 1803. Brazilian J. Biol. 2008, 68, 433–439. [Google Scholar] [CrossRef] [Green Version]
- FAO/DVWK. Fish Passes Design, Dimensions and Monitoring; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Bermúdez, M.; Puertas, J.; Cea, L.; Pena, L.; Balairón, L. Influence of pool geometry on the biological efficiency of vertical slot fishways. Ecol. Eng. 2010, 36, 1355–1364. [Google Scholar] [CrossRef]
- Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoon, J.D.; Baek, S.H.; Park, S.H.; Lee, J.W.; Lee, J.A.; Jang, M.H. An efficiency analysis of a nature-like fishway for freshwater fish ascending a large Korean river. Water (Switzerland) 2016, 8. [Google Scholar] [CrossRef]
- Pompeu, P.D.S.; Martinez, C.B. Swimming performance of the migratory Neotropical fish Leporinus reinhardti (Characiformes: Anostomidae). Neotrop. Ichthyol. 2007, 5, 139–146. [Google Scholar] [Green Version]
- Larinier, M. Pool Fishways, Pre-Barrages and Natural Bypass Channels. BFPP-Connaiss. et Gest. du Patrim. Aquat. 2002, 364, 54–82. [Google Scholar] [CrossRef]
- Clay, C. Design of Fishways and Other Fish Facilities; Lewis Publisher: Boca Raton, FL, USA, 1995. [Google Scholar]
- Rajaratnam, N.; Van der Vinne, G.; Katopodis, C. Hydraulics of vertical slot fishways. J. Hydraul. Eng. 1986, 112, 909–927. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Katopodis, C.; Solanki, S. New designs for vertical slot fishways. Can. J. Civ. Eng. 1992, 19, 402–414. [Google Scholar] [CrossRef]
- Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [Google Scholar] [CrossRef]
- Rodríguez, T.T.; Agudo, J.P.; Mosquera, L.P.; González, E.P. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecol. Eng. 2006, 27, 37–48. [Google Scholar] [CrossRef]
- Puertas, J.; Cea, L.; Bermúdez, M.; Pena, L.; Rodríguez, Á.; Rabuñal, J.R.; Balairón, L.; Lara, Á.; Aramburu, E. Computer application for the analysis and design of vertical slot fishways in accordance with the requirements of the target species. Ecol. Eng. 2012, 48, 51–60. [Google Scholar] [CrossRef]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [Google Scholar] [CrossRef]
- Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [Google Scholar] [CrossRef]
- Bombač, M.; Novak, G.; Mlačnik, J.; Četina, M. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [Google Scholar] [CrossRef]
- Pena, L.; Puertas, J.; Bermúdez, M.; Cea, L.; Peña, E. Conversion of vertical slot fishways to deep slot fishways to maintain operation during low flows: Implications for hydrodynamics. Sustain. 2018, 10, 2406. [Google Scholar] [CrossRef]
- Katopodis, C. Developing a toolkit for fish passage, ecological flow management and fish habitat works. J. Hydraul. Res. 2005, 43, 451–467. [Google Scholar] [CrossRef]
- Tritico, H.M.; Cotel, A.J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 2010, 213, 2284–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.; Santos, J.; Ferreira, M.T.; Pinheiro, A.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian Barbel (Luciobargus bocagel, Steindachner 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [Google Scholar] [CrossRef]
- Santos, J.M.; Silva, A.; Katopodis, C.; Pinheiro, P.; Pinheiro, A.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [Google Scholar] [CrossRef]
- Mao, X.; Fu, J.J.; Tuo, Y.C.; An, R.D.; Li, J. Influence of structure on hydraulic characteristics of T shape fishway. J. Hydrodyn. 2012, 24, 684–691. [Google Scholar] [CrossRef]
- Maeda, S. A simulation-optimization method for ecohydraulic design of fish habitat in a canal. Ecol. Eng. 2013, 61, 182–189. [Google Scholar] [CrossRef]
- Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishway. Ecol. Eng. 2016, 88, 217–225. [Google Scholar] [CrossRef]
- Liu, M.; Rajaratnam, N.; Zhu, D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 765–777. [Google Scholar] [CrossRef]
- Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [Google Scholar] [CrossRef]
- Sanagiotto, D.; Pinheiro, A.; Endres, L.; Marques, M. Estudo experimental das características do escoamento em escadas para peixes do tipo ranhura vertical: turbulência do escoamento. Rev. Bras. Recur. Hídricos 2011, 16, 195–205. [Google Scholar] [CrossRef]
- Sanagiotto, D.; Pinheiro, A.; Endres, L.; Marques, M. Estudo experimental das características do escoamento em escadas para peixes do tipo ranhura vertical: padrões gerais do escoamento. Rev. Bras. Recur. Hídricos 2012, 17, 135–148. [Google Scholar] [CrossRef]
- Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [Google Scholar] [CrossRef]
- Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Katopodis, C.; Mainali, A. Plunging and streaming flows in pool and weir fishways. J. Hydraul. Eng. 1988, 114, 939–944. [Google Scholar] [CrossRef]
- Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [Google Scholar] [CrossRef]
- Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130, 10–23. [Google Scholar] [CrossRef]
- Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [Google Scholar] [CrossRef]
- Guiny, E.; Ervine, D.A.; Armstrong, J.D. Hydraulic and biological aspects of fish passes for Atlantic Salmon. J. Hydraul. Eng. 2005, 131, 542–553. [Google Scholar] [CrossRef]
- Stuart, I.G.; Berghuis, A.P. Upstream passage of fish through a vertical-slot fishway in an Australian subtropical river. Fish. Manag. Ecol. 2002, 9, 111–122. [Google Scholar] [CrossRef]
- Viana, E.; Martinez, C.; Marques, M. Mapeamento do campo de velocidades no mecanismo de transposição de peixes do tipo ranhura vertical construído na UHE de Igarapava. Rev. Bras. Recur. Hídricos 2007, 12, 5–15. [Google Scholar]
- Viana, E.M.F.; Faria, M.T.C.; Martinez, C.B. Experimental flow analysis of a pool-type fishway using velocity fields from reduced model and prototype. Int. Rev. Mech. Eng. 2014, 8, 655. [Google Scholar] [CrossRef]
- Bombač, M.; Novak, G.; Rodič, P.; Četina, M. Numerical and physical model study of a vertical slot fishway. J. Hydrol. Hydromech. 2014, 62, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Bates, P.; Lane, S.; Ferguson, R. Computational Fluid Dynamics: Applications in Environmental Hydraulics; John Wiley and Sons: Chichester, UK, 2005. [Google Scholar]
- Alvarez-Vázquez, L.J.; Martínez, A.; Vázquez-Méndez, M.E.; Vilar, M.A. Vertical slot fishways: Mathematical modeling and optimal management. J. Comput. Appl. Math. 2008, 218, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Cea, L.; Pena, L.; Puertas, J.; Vázquez-Cendón, M.E.; Peña, E. Application of deveral depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [Google Scholar] [CrossRef]
- Bombač, M.; Četina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. Ecol. Eng. 2017, 107, 126–136. [Google Scholar] [CrossRef]
- Masayuki, F.; Mai, A.; Mattashi, I. 3-D Flow Simulation of an Ice-Harbor Fishway. In Advances in Water Resources and Hydraulic Engineering; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Heimerl, S.; Hagmeyer, M.; Echteler, C. Numerical flow simulation of pool-type fishways: New ways with well-known tools. Hydrobiologia 2008, 609, 189–196. [Google Scholar] [CrossRef]
- Abdelaziz, S.M.A. Numerical Simulation of Fish Behavior and Fish Movement Through Passages. Ph.D. Thesis, Technische Universität München, Munich, Germany, March 2013. [Google Scholar]
- Marriner, B.A. Hydraulics of the vertical slot fishway, a case study on the Vianney- Legendre fishway in Quebec, Canada; University of Alberta: Edmonton, AB, Canada, 2013. [Google Scholar]
- Shamloo, H.; Aknooni, S. 3D-Numerical Simulation of the Flow in Pool and Weir Fishways. In Proceedings of the XIX International Conference on Water Resources CMWR 2012, Urbana, IL, USA, 17–22 June 2012. [Google Scholar]
- An, R.; Li, J.; Liang, R.; Tuo, Y. Three-dimensional simulation and experimental study for optimising a vertical slot fishway. J. Hydro-Environ. Res. 2016, 12, 119–129. [Google Scholar] [CrossRef]
- Ballu, A.; Pineau, G.; Calluaud, D.; David, L. Characterization of the flow in a vertical slot fishway with macro-roughnesses using unsteady (URANS and LES) simulations. In Proceedings of the E-proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017. [Google Scholar]
- Stamou, A.I.; Mitsopoulos, G.; Rutschmann, P.; Bui, M.D. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid Mech. 2018, 1–27. [Google Scholar] [CrossRef]
- Beamish, F.W.H. Swimming capacity. Fish Physiol. 1978, 7, 101–187. [Google Scholar]
- Hammer, C. Fatigue and exercise tests with fish. Comp. Biochem. Physiol. 1995, 112, 1–20. [Google Scholar] [CrossRef]
- Nikora, V.I.; Aberle, J.; Biggs, B.J.F.; Jowett, I.G.; Sykes, J.R.E. Effects of fish size, time-to-fatigue and turbulence on swimming performance: a case study of Galaxias maculatus. J. Fish Biol. 2003, 63, 1365–1382. [Google Scholar] [CrossRef]
- Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [Google Scholar] [CrossRef]
- Wang, R.W.; David, L.; Larinier, M. Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowl. Manag. Aquat. Ecosyst. 2010, 396, 1–21. [Google Scholar] [CrossRef]
- Tarrade, L.; Texier, A.; David, L.; Larinier, M. Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 2008, 609, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Cornu, V.; Baran, P.; Calluaud, D.; David, L. Effects of various configurations of vertical slot fishways on fish behaviour in an experimental flume. In Proceedings of the 9th International Symposium on Ecohydraulics, Vienne, Austria, 17–21 September 2012. [Google Scholar]
- Klein, J.; Oertel, M. Influence of inflow and outflow boundary conditions on uniform flow in vertical slot fishways models. In Proceedings of the 7th International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May 2018. [Google Scholar]
- ANSYS Incorporated. Ansys CFX-Solver Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Jones, W.; Launder, B. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 1972, 15, 301–314. [Google Scholar] [CrossRef]
- Blank, M. Advanced Studies of Fish Passage Through Culverts: 1-D and 3-d Hydraulic Modeling of Velocity, Fish Energy Expenditure, and a New Barrier Assessment Method; Montana State University: Bozeman, MT, USA, 2008. [Google Scholar]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Flow Simulation in a rock-ramp fish pass. J. Hydraul. Eng. 2016, 142, 04016031. [Google Scholar] [CrossRef]
- Tran, T.D.; Chorda, J.; Laurens, P.; Cassan, L. Modelling nature-like fishway flow around unsubmerged obstacles using a 2D shallow water model. Environ. Fluid Mech. 2016, 16, 413–428. [Google Scholar] [CrossRef]
- Quaresma, A.L.; Romão, F.; Branco, P.; Ferreira, M.T.; Pinheiro, A.N. Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics. Ecol. Eng. 2018, 122, 197–206. [Google Scholar] [CrossRef]
- Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [Google Scholar] [CrossRef]
- Tajnesaie, M.; Nodoushan, E.J.; Barati, R.; Moghadam, M.A. Performance comparison of four turbulence models for modeling of secondary flow cells in simple trapezoidal channels. ISH J. Hydraul. Eng. 2018, 1–11. [Google Scholar] [CrossRef]
- Cea, L.; Puertas, J.; Vázquez-Cendón, M.E. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng. 2007, 14, 303–341. [Google Scholar] [CrossRef]
- Ma, L.; Ashworth, P.J.; Best, J.L.; Elliott, L.; Ingham, D.B.; Whitcombe, L.J. Computational fluid dynamics and the physical modelling of an upland urban river. Geomorphology 2002, 44, 375–391. [Google Scholar] [CrossRef]
- Ferrari, G.E.; Politano, M.; Weber, L. Numerical simulation of free surface flows on a fish bypass. Comput. Fluids 2009, 38, 997–1002. [Google Scholar] [CrossRef]
- Celik, I.; Ghia, U.; Roache, P.; Freitas, C.; Coleman, H.; Raad, P. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar] [Green Version]
- Roache, P.J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Klein, J.; Oertel, M. Comparison between crossbar block ramp and vertical slot fish pass via numerical 3D CFD simulation. In Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Wu, T.Y. Introduction to The Scaling of Aquatic Animal Locomotion. In Scale Effects in Animal Locomotion; Academic Press: Cambridge, Massachusetts, USA, 1977. [Google Scholar]
- Bell, M. Fisheries Handbook of Engineering Requirements and Biological Criteria, 3rd ed.; Corps of Engineers, North Pacific Division: Portland, OR, USA, 1990. [Google Scholar]
- Guiny, E.; Armstrong, J.D.; Ervine, D.A. Preferences of mature male brown trout and Atlantic salmon parr for orifice and weir fish pass entrances matched for peak velocities and turbulence. Ecol. Freshw. Fish 2003, 12, 190–195. [Google Scholar] [CrossRef]
- Cheong, T.S.; Kavvas, M.L.; Anderson, E.K. Evaluation of adult white sturgeon swimming capabilities and applications to fishway design. Environ. Biol. Fishes 2006, 77, 197–208. [Google Scholar] [CrossRef]
- Kirk, M.A.; Caudill, C.C.; Syms, J.C.; Tonina, D. Context-dependent responses to turbulence for an anguilliform swimming fish, Pacific lamprey, during passage of an experimental vertical-slot weir. Ecol. Eng. 2017, 106, 296–307. [Google Scholar] [CrossRef]
- Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2013, 29, 425–430. [Google Scholar] [CrossRef]
- Tan, J.; Tao, L.; Gao, Z.; Dai, H.; Yang, Z.; Shi, X. Modeling fish movement trajectories in relation to hydraulic response relationships in an experimental fishway. Water (Switzerland) 2018, 10, 1511. [Google Scholar] [CrossRef]
- Peake, S.; McKinley, R.S.; Scruton, D.A. Swimming performance of various freshwater Newfoundland salmonids relative to habitat selection and fishway design. J. Fish Biol. 1997, 51, 710–723. [Google Scholar] [CrossRef]
- Alvarez-Vázquez, L.J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M.E.; Vilar, M.A. Optimal shape design for fishways in rivers. Math. Comput. Simul. 2007, 76, 218–222. [Google Scholar] [CrossRef]
Geometry Code Design/Slope | Design Description | Slope [%] | Discharges [m³/s] |
---|---|---|---|
D1S1 | Reference (Figure 2a) | 1.67 | 0.600 */0.800 */1.000 **/ 1.200 */1.400 * |
D1S2 | 3.33 | 0.839/1.118/1.398 */1.678/1.957 | |
D1S3 | 5.00 | 0.952/1.269/1.586 */1.903/2.22 | |
D1S4 | 6.67 | 1.059/1.412/1.765 */2.118/2.471 | |
D2S1 | With cylinder: diameter = 0.4 m, height = 0.4 m (Figure 2b) | 1.67 | 1.000 |
D2S2 | 3.33 | 1.398 | |
D2S3 | 5.00 | 1.586 | |
D2S4 | 6.67 | 1.765 | |
D3S1 | With cylinders: diameter = 0.4 m, height = 0.2 m (Figure 2b) | 1.67 | 1.000 |
D3S2 | 3.33 | 1.398 | |
D3S3 | 5.00 | 1.586 | |
D3S4 | 6.67 | 1.765 | |
D4S1 | Non-alternating straight baffles (Figure 2c) | 1.67 | 1.000 |
D5S1 | Alternating straight baffles (Figure 2d) | 1.67 | 1.000 |
D5S2 | 3.33 | 1.398 | |
D5S3 | 5.00 | 1.586 | |
D5S4 | 6.67 | 1.765 |
Design/Slope | Q(m³·s−1) | h (m) | V max (m·s−1) | Vmax/Vmaxt | CQ | Re | Fr | PV (W/m³) |
---|---|---|---|---|---|---|---|---|
D1S1 | 0.600 | 0.860 | 1.431 | 1.44 | 1.194 | 6.98 × 105 | 0.41 | 55.55 |
0.800 | 1.078 | 1.543 | 1.56 | 1.270 | 7.42 × 105 | 0.39 | 59.09 | |
1.000 | 1.280 | 1.622 | 1.64 | 1.337 | 7.81 × 105 | 0.37 | 62.21 | |
1.200 | 1.495 | 1.664 | 1.68 | 1.374 | 8.03 × 105 | 0.36 | 63.91 | |
1.400 | 1.716 | 1.665 | 1.68 | 1.396 | 8.16 × 105 | 0.34 | 64.96 | |
D1S2 | 0.839 | 0.850 | 2.146 | 1.53 | 1.194 | 9.87 × 105 | 0.58 | 157.19 |
1.118 | 1.040 | 2.265 | 1.62 | 1.301 | 1.08 × 106 | 0.57 | 171.20 | |
1.398 | 1.275 | 2.317 | 1.65 | 1.327 | 1.10 × 106 | 0.53 | 174.62 | |
1.678 | 1.480 | 2.358 | 1.68 | 1.372 | 1.13 × 106 | 0.50 | 180.56 | |
1.957 | 1.740 | 2.324 | 1.66 | 1.361 | 1.12 × 106 | 0.46 | 179.11 | |
D1S3 | 0.952 | 0.807 | 2.497 | 1.46 | 1.165 | 1.18 × 106 | 0.71 | 281.80 |
1.269 | 1.073 | 2.544 | 1.48 | 1.168 | 1.18 × 106 | 0.62 | 282.51 | |
1.586 | 1.300 | 2.546 | 1.48 | 1.205 | 1.22 × 106 | 0.58 | 291.43 | |
1.903 | 1.540 | 2.588 | 1.51 | 1.221 | 1.24 × 106 | 0.54 | 295.19 | |
2.220 | 1.845 | 2.547 | 1.48 | 1.189 | 1.20 × 106 | 0.48 | 287.43 | |
D1S4 | 1.059 | 0.775 | 2.914 | 1.47 | 1.169 | 1.37 × 106 | 0.84 | 435.22 |
1.412 | 1.050 | 2.926 | 1.48 | 1.151 | 1.34 × 106 | 0.71 | 428.32 | |
1.765 | 1.275 | 2.947 | 1.49 | 1.184 | 1.38 × 106 | 0.66 | 440.91 | |
2.118 | 1.517 | 2.97 | 1.50 | 1.195 | 1.40 × 106 | 0.61 | 444.69 | |
2.471 | 1.855 | 2.856 | 1.44 | 1.140 | 1.33 × 106 | 0.53 | 424.27 | |
D2S1 | 1.000 | 1.370 | 1.601 | 1.62 | 1.249 | 7.30 × 105 | 0.34 | 58.12 |
D2S2 | 1.398 | 1.415 | 2.166 | 1.55 | 1.195 | 9.88 × 105 | 0.45 | 157.34 |
D2S3 | 1.586 | 1.450 | 2.403 | 1.40 | 1.081 | 1.09 × 106 | 0.49 | 261.29 |
D2S4 | 1.765 | 1.450 | 2.706 | 1.37 | 1.042 | 1.22 × 106 | 0.55 | 387.70 |
D3S1 | 1.000 | 1.325 | 1.569 | 1.58 | 1.292 | 7.55 × 105 | 0.35 | 60.10 |
D3S2 | 1.398 | 1.315 | 2.212 | 1.58 | 1.286 | 1.06 × 106 | 0.50 | 169.30 |
D3S3 | 1.586 | 1.35 | 2.476 | 1.44 | 1.161 | 1.17 × 106 | 0.55 | 280.64 |
D3S4 | 1.765 | 1.355 | 2.766 | 1.40 | 1.115 | 1.30 × 106 | 0.61 | 414.88 |
D4S1 | 1.000 | 1.300 | 1.741 | 1.76 | 1.316 | 7.69 × 105 | 0.37 | 61.25 |
D5S1 | 1.000 | 1.510 | 1.423 | 1.44 | 1.133 | 6.62 × 105 | 0.29 | 52.73 |
D5S2 | 1.398 | 1.680 | 1.861 | 1.33 | 1.007 | 8.32 × 105 | 0.35 | 132.52 |
D5S3 | 1.586 | 1.760 | 2.027 | 1.18 | 0.89 | 9.01 × 105 | 0.37 | 215.26 |
D5S4 | 1.765 | 1.840 | 2.166 | 1.09 | 0.821 | 9.59 × 105 | 0.38 | 305.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanagiotto, D.G.; Rossi, J.B.; Bravo, J.M. Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways. Water 2019, 11, 199. https://doi.org/10.3390/w11020199
Sanagiotto DG, Rossi JB, Bravo JM. Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways. Water. 2019; 11(2):199. https://doi.org/10.3390/w11020199
Chicago/Turabian StyleSanagiotto, Daniela Guzzon, Júlia Brusso Rossi, and Juan Martín Bravo. 2019. "Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways" Water 11, no. 2: 199. https://doi.org/10.3390/w11020199
APA StyleSanagiotto, D. G., Rossi, J. B., & Bravo, J. M. (2019). Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways. Water, 11(2), 199. https://doi.org/10.3390/w11020199