Salt Tolerance and Desalination Abilities of Nine Common Green Microalgae Isolates
Abstract
:1. Introduction
- -
- It was assumed that those species, which may often occur in terrestrial habitats (Chlorella and Chlorococcum spp.) would be characterized by higher salt tolerance than species more characteristic in freshwater habitats.
- -
- It was hypothesized that the above mentioned often terrestrial species would be able to remove more ions (especially chloride) than species more characteristic in freshwater habitats.
- -
- Intense nutrient removal ability despite high salt concentration was supposed in the case of more tolerant isolates.
2. Materials and Methods
2.1. Strains, Culturing Conditions, and Experimental Design
2.2. Measurement of the Growth of the Cultures
2.3. Measurement of Conductivity, Chloride, and Nutrient (Nitrate and Phosphate) Content Changes
2.4. Statistical Analysis
3. Results
3.1. Growth and Salt Tolerance of the Cultures
3.2. Conductivity Reduction and Chloride Removal
3.3. Nutrient (Nitrate and Phosphate) Removal
4. Discussion
4.1. Growth and Salinity Tolerance of the Cultures
4.2. Conductivity Reduction and Chloride Removal
4.3. Nutrient (Nitrate and Phosphate) Removal
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, Y.; Zhu, H.; Bañuelos, G.; Yan, B.; Zhou, Q.; Yu, X.; Cheng, X. Constructed wetlands for saline wastewater treatment: A review. Ecol. Eng. 2019, 98, 275–285. [Google Scholar] [CrossRef]
- Li, J.G.; Pu, L.J.; Han, M.F. Soil salinization in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhang, G.M.; Lu, X.T. Salt tolerance during seed germination andearly seedlings stages of 12 halophytes. Plant Soil 2015, 388, 229–241. [Google Scholar] [CrossRef]
- Wauchope, R.D. The pesticide content of surface water draining fromagricultural fields—A review. J. Environ. Qual. 1978, 7, 459–472. [Google Scholar] [CrossRef]
- Beltrán, J.M. Irrigation with saline water: Benefits and environmentalimpact. Agric. Water Manag. 1999, 40, 183–194. [Google Scholar] [CrossRef]
- Jiang, D.M.; Wang, X.Y.; Liu, M.H.; Lu, G.F. Study on agricultural structure andnon-point source pollution: A case in Dapu Town of Yixing City. Ecol. Econ. 2006, 2, 270–280. [Google Scholar]
- Ghobadi, N.M.; Rahimi, H.; Sohrabi, T.; Naseri, A.; Tofighi, H. Potential riskof calcium carbonate precipitation in agricultural drain envelopes in arid and semi-arid areas. Agric. Water Manag. 2010, 97, 1602–1608. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.X.; Yang, L.Z.; Zhang, F.S.; Norse, D.; Zhu, Z.L. Agriculturalnon-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Dosdat, A.; Gaumet, F.; Chartois, H. Marine aquaculture effluent monitoring:methodological approach to the evaluation of nitrogen and phosphorus excretion by fish. Aquac. Eng. 1995, 14, 59–84. [Google Scholar] [CrossRef]
- Davidson, J.; Helwig, N.; Summerfelt, S.T. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent. Aquac. Eng. 2008, 39, 6–15. [Google Scholar] [CrossRef]
- Hárs, T. Environmental and Economic Impacts of Thermal Waters. Ph.D. Thesis, Szent István University, Gödöllő, Hungary, 2006. [Google Scholar]
- Bayer, A. Water quality issues in multipurpose thermal water utilization. Hidr. Közl. 1985, 4, 247–252. (In Hungarian) [Google Scholar]
- Takács, J.; Nagy, S. The environmental need of thermal water utilization. Bányászat 2009, 77, 169–180. (In Hungarian) [Google Scholar]
- Arámburo-Miranda, I.V.; Ruelas-Ramírez, E.H. Desalination of sea water with aquatic lily (Eichhornia crassipes). Environ. Sci. Pollut. Res. 2017, 24, 25676–25681. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Ying, C.; Lu, J.; Lai, Q.; Zhou, K.; Wang, H.; Chen, L. Removal of K+, Na+, Ca2+, and Mg2+ from saline–alkaline water using the microalga Scenedesmus obliquus. Chin. J. Oceanol. Limnol. 2013, 31, 1248–1256. [Google Scholar] [CrossRef]
- Kokabian, B.; Ghimire, U.; Gude, V.G. Water deionization with renewable energy production in microalgae—Microbial desalination process. Renew. Energy 2018, 122, 354–361. [Google Scholar] [CrossRef]
- Sahle-Demessie, E.; Aly Hassan, A.; El Badawy, A. Bio-desalination of brackish and seawater using halophytic algae. Desalination 2019, 465, 104–113. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef]
- Delrue, F.; Álvarez-Díaz, P.D.; Fon-Sing, S.; Fleury, G.; Sassi, J.F. The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies 2016, 9, 132. [Google Scholar] [CrossRef]
- Gan, X.; Shen, G.; Xin, B.; Li, M. Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water. Desalination 2016, 400, 1–6. [Google Scholar] [CrossRef]
- Kirst, G.O. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. 1989, 41, 21–53. [Google Scholar] [CrossRef]
- Brown, L.M. Photosynthetic and growth responses to salinity in a marine isolate of Nannochloris bacillaris (Chlorophyceae). J. Phycol. 1982, 18, 483–488. [Google Scholar] [CrossRef]
- Alvensleben, N.; Stookey, K.; Magnusson, M.; Heimann, K. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PLoS ONE 2013, 8, e63569. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.F.; Tabatabaei, M.; Mohtashami, S.K.; Tohidfar, M.; Moradi, F. Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Not. Sci. Biol. 2013, 5, 309–315. [Google Scholar] [CrossRef]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, N.; Hagemann, M. Salt acclimation of algae and cyanobacteria: A comparison. In Algal Adaptation to Environmental Stresses; Rai, L.C., Gaur, J.P., Eds.; Springer: Berlin, Germany, 2001; pp. 323–361. [Google Scholar]
- Demetriou, G.; Neonaki, C.; Navakoudis, E.; Kotzabasis, K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochim. Biophys. Acta 2007, 1767, 272–280. [Google Scholar] [CrossRef]
- Hajibagheri, M.A.; Gilmour, D.J.; Collins, J.C.; Flowers, T.J. Xray microanalysis and ultrastructural studies of cell compartments of Dunaliella parva. J. Exp. Bot. 1986, 37, 1725–1732. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, A.K.; Chandra, P.; Singh, D.P. Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour. Technol. 2018, 270, 489–497. [Google Scholar] [CrossRef]
- Cram, W.J. Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. In Encyclopedia of Plant Physiology; Liittge, U., Pitman, M.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1976; Volume 2A, pp. 283–316. [Google Scholar]
- Gutknecht, J.; Hastings, D.F.; Bisson, M.A. Ion transport and turgor pressure regulation in giant algal cells. In Membrane Transport in Biology III: Transport across Biological Membranes; Giebisch, G., Tosteson, D.C., Ussing, H.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 125–174. [Google Scholar]
- Li, X.; Yuan, Y.; Cheng, D.; Gao, J.; Kong, L.; Zhao, Q.; Wei, W.; Sun, Y. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. Bioresour. Technol. 2018, 250, 495–504. [Google Scholar] [CrossRef]
- Fritioff, Å.; Kautsky, L.; Greger, M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ. Pollut. 2005, 133, 265–274. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Calheiros, C.S.; Rangel, A.O.; Castro, P.M. Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresour. Technol. 2008, 99, 6866–6877. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 2008, 61, 229–242. [Google Scholar] [CrossRef]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, andionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Laurens, L.M.L.; Sweeney, N.; Pruthi, V.; Poluri, K.M.; Pienkos, P.T. Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production. Algal Res. 2019, 37, 260–268. [Google Scholar] [CrossRef]
- Dortch, Q.; Clayton, J.R., Jr.; Thoresen, S.S.; Ahmed, S.I. Species differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol. 1984, 81, 237–250. [Google Scholar] [CrossRef]
- Aravantinou, A.F.; Theodorakopoulos, M.A.; Manariotis, I.D. Selection of microalgae for wastewater treatment and potential lipids production. Bioresour. Technol. 2013, 147, 130–134. [Google Scholar] [CrossRef]
- AlgaeBase. Available online: http://www.algaebase.org (accessed on 12 August 2019).
- Salinometry. Available online: http://salinometry.com (accessed on 24 November 2019).
- Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- CCAP Media Recipes. Available online: https://www.ccap.ac.uk/media/documents/BB.pdf (accessed on 24 May 2019).
- Németh, J. Methods of Biological Water Qualification; Institute of Environmental Management, Environmental Protection Information Service: Budapest, Hungary, 1998. [Google Scholar]
- Hungarian Standard MSZ 1484-13: 2009. Water Quality. Part 13: Determination of Nitrate and Nitrite Content by Spectrophotometric Method. Available online: http://www.mszt.hu/web/guest/webaruhaz (accessed on 24 May 2019).
- Hungarian Standard MSZ EN ISO 6878: 2004. Water quality. Determination of phosphorus. Ammonium molybdate spectrometric method (ISO 6878:2004). Available online: https://www.iso.org/standard/36917.html (accessed on 24 May 2019).
- Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice-Hall International: New Jersey, NJ, USA, 1996. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Fraghl, A.M.; Shaddad, M.A.K.; Galal, H.R.; Hassan, E.A. Effect of salt stress on growth, antioxidant enzymes, lipid peroxidation and some metabolic activities in some freshwater and marine algae. Egypt. J. Bot. 2015, 55, 1–15. [Google Scholar]
- Wang, T.; Ge, H.; Liu, T.; Tian, X.; Wang, Z.; Guo, M.; Chu, J.; Zhuang, Y. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-levelanalysis of oxidative response, key enzyme activity and biochemicalalteration. J. Biotechnol. 2016, 228, 18–27. [Google Scholar] [CrossRef]
- Alvensleben, N.; Magnusson, M.; Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 2016, 28, 861–876. [Google Scholar] [CrossRef]
- Kókai, Z.; Bácsi, I.; Török, P.; Buczkó, K.; T-Krasznai, E.; Balogh, C.; Tóthmérész, B.; B-Béres, V. Halophilic diatom taxa are sensitive indicators of even short term changes in lowland lotic systems. Acta Bot. Croat. 2015, 74, 287–302. [Google Scholar] [CrossRef] [Green Version]
- B-Béres, V.; Tóthmérész, B.; Bácsi, I.; Borics, G.; Abonyi, A.; Tapolczai, K.; Rimet, F.; Bouchez, A.; Várbíró, G.; Török, P. Autumn drought drives functional diversity of benthic diatom assemblages of continental streams. Adv. Water Resour. 2019, 126, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Perrineau, M.M.; Zelzion, E.; Gross, J.; Price, D.C.; Boyd, J.; Bhattacharya, D. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environ. Microbiol. 2014, 16, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Larsen, H. Halophilic and halotolerant microorganisms—An overview and historical perspective. FEMS Microbiol. Rev. 1986, 39, 3–7. [Google Scholar] [CrossRef]
- Apte, S.K.; Thomas, J. Sodium transport in filamentous nitrogen-fixing cyanobacteria. J. Biosci. 1983, 5, 225–234. [Google Scholar] [CrossRef]
- Wiangnon, K.; Raksajit, W.; Incharoensakdi, A. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol. Lett. 2007, 270, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Tuna, A.L.; Kaya, C.; Higgs, D.; Murillo-Amador, B.; Aydemir, S.; Girgin, A.R. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 2008, 62, 10–16. [Google Scholar] [CrossRef]
- Moudřiková, S.; Sadowsky, A.; Metzger, S.; Nedbal, L.; Mettler-Altmann, T.; Mojzeš, P. Quantification of polyphosphate in microalgae by Raman microscopy and by a reference enzymatic assay. Anal. Chem. 2017, 89, 12006–12013. [Google Scholar] [CrossRef]
- Eixler, S.; Karsten, U.; Selig, U. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 2006, 45, 53–60. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.-Y.; Gan, K.; Sun, Y.-X. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar]
- Feng, Y.; Li, C.; Zhang, D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour. Technol. 2011, 102, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Kapdan, I.K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- Alketife, A.M.; Judd, S.; Znad, H. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ. Technol. 2017, 38, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tam, N.F.Y.; Wong, M.H. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Mar. Pollut. Bull. 2008, 57, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001, 5, 73–83. [Google Scholar] [CrossRef]
- Maine, M.; Sune, N.; Hadad, H.; Sánchez, G.; Bonetto, C. Nutrient and metal removal in a constructed wetland for wastewater treatment from ametallurgic industry. Ecol. Eng. 2006, 26, 341–347. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, S.-H.; Delaune, R.D.; Cho, J.-S.; Heo, J.-S.; Ok, Y.S.; Seo, D.-C. Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations. Agric. Water Manag. 2015, 162, 1–14. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, H.; Bañuelos, G.; Yan, B.; Shutes, B.; Cheng, X.; Chen, X. Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors. Chemosphere 2017, 187, 52–61. [Google Scholar] [CrossRef]
Algae Strains | EC50 (mg L−1 NaCl) | ||
---|---|---|---|
4th Day | 7th Day | 14th Day | |
Chlorella sorokiniana | 9426 | 9594 | 9209 |
Chlorella vulgaris | 29,233 | 21,230 | 10,890 |
Chlorococcum sp. | n.c. 1 | n.c. | n.c. |
(EC25 = 13,426) | (EC25 = 11,243) | (EC25 = 5092) | |
Desmodesmus communis | n.c. | 6386 | 2801 |
(EC25 = 3961) | |||
Desmodesmus spinosus | 7361 | 5595 | 4382 |
Scenedesmus obliquus | 5779 | 3585 | 3033 |
Scenedesmus obtusus | 6273 | n.c. | n.c. |
(EC25 = 2867) | (EC25 = 2924) | (EC25 = 3079) | |
Monoraphidium komarkove | 3146 | 2464 | 2719 |
Monoraphidium pusillum | 6638 | 5227 | 3789 |
Cond. (%) | CSOR | CVUL | CHLO | DCOM | DSPI | SOBL | SOBT | MKOM | MPUS |
---|---|---|---|---|---|---|---|---|---|
Control | 11.3 | 10.7 | 32.1 | 16.7 | 14.8 | 14.8 | 18.7 | 9.6 | 7.5 |
±0.2 a | ±0.8 a | ±4.8 b | ±14.5 a,b | ±1.3 a,b | ±10.4 a,b | ±5.3 a,b | ±3.8 a | ±2.9 a | |
500 | - | - | 30.1 | 20.2 | 27.0 | 22.2 | 21.5 | 22.9 | 24.1 |
±5.0 a | ±11.2 a | ±3.5 a | ±6.0 a | ±6.4 a | ±3.3 *,a | ±2.4 *,a | |||
1000 | - | - | 27.9 | 28.3 | 28.7 | 26.1 | 23.8 | 24.2 | 21.2 |
±0.6 a | ±14.0 a | ±9.4 a | ±9.7 a | ±11.7 a | ±8.3 *,a | ±8.1 *,a | |||
5000 | - | - | 23.8 | 29.7 | 38.5 | 7.8 | 26.3 | 20.2 | 21.3 |
±2.5 a | ±19.6 a | ±16.7 a | ±2.9 a | ±2.2 a | ±3.9 a | ±3.0 *,a | |||
10,000 | 20.0 | 17.6 | 24.5 | 29.1 | 36.2 | 2.8 | 12.1 | 21.4 | 22.2 |
±1.6 *,a | ±4.0 a | ±3.6 a | ±6.4 a | ±11.6 a | ±0.8 b | ±0.9 a | ±2.9 a | ±2.6 *,a | |
15,000 | 22.9 | 19.1 | - | - | - | - | - | - | - |
±0.9 *,a | ±4.7 a | ||||||||
20,000 | 22.1 | 22.4 | - | - | - | - | - | - | - |
±4.6 *,a | ±4.2 a |
Cl− (%) | CSOR | CVUL | CHLO | DCOM | DSPI | SOBL | SOBT | MKOM | MPUS |
---|---|---|---|---|---|---|---|---|---|
Control | 12.0 | 14.6 | 39.3 | 21.7 | 20.2 | 2.6 | 17.5 | 41.9 | 20.3 |
±5.4 a | ±2.9 a | ±10.2 a | ±18.4 a | ±11.3 a | ±0.1 a,CHSP | ±13.0 a | ±19.4 a | ±1.2 a | |
500 | - | - | 24.3 | 7.4 | 27.0 | 23.4 | 19.9 | 24.4 | 26.7 |
±7.1 *,a | ±6.4 b | ±3.5 a | ±7.3 *,a,b | ±10.3 a,b | ±1.3 a | ±1.3 a | |||
1000 | - | - | 24.0 | 12.1 | 25.3 | 25.5 | 17.1 | 23.7 | 22.2 |
±3.1 *,a | ±5.2 a | ±6.9 a | ±1.8 *,a | ±5.3 a | ±7.6 a | ±7.6 a | |||
5000 | - | - | 22.5 | 12.7 | 28.9 | 39.1 | 30.6 | 18.8 | 9.7 |
±0.7 *,a | ±11.0 a | ±16.7 a | ±8.3 *,a | ±9.4 a | ±9.7 a | ±5.6 *,a | |||
10,000 | 26.7 | 21.9 | 18.8 | 15.7 | 17.1 | 23.4 | 20.8 | 21.0 | 24.3 |
±1.5 *,a | ±3.4 a | ±1.8 *,a | ±2.0 a | ±1.0 a | ±0.7 *,a | ±4.2 a | ±2.8 a | ±2.8 a | |
15,000 | 28.6 | 23.8 | - | - | - | - | - | - | - |
±0.9 *,a | ±3.9 a | ||||||||
20,000 | 28.8 | 26.9 | - | - | - | - | - | - | - |
±2.8 *,a | ±4.9 a |
NO3− (%) | CSOR | CVUL | CHLO | DCOM | DSPI | SOBL | SOBT | MKOM | MPUS |
---|---|---|---|---|---|---|---|---|---|
Control | 94.8 | 99.9 | 96.4 | 85.5 | 91.1 | 80.5 | 76.1 | 76.8 | 88.9 |
±1.0 a | ±0.1 a | ±1.0 a | ±2.6 b | ±0.2 a,b | ±2.0 b | ±4.8 c | ±2.1 b,c | ±3.1 a,b | |
500 | - | - | 93.7 | 88.6 | 83.1 | 76.4 | 70.6 | 69.1 | 86.5 |
±3.4 a | ±3.2 a | ±0.1 *,a | ±2.4 a,b | ±6.3 a,b | ±8.3 b | ±3.3 a | |||
1000 | - | - | 90.3 | 85.4 | 78.0 | 81.3 | 70.6 | 52.1 | 82.8 |
±1.8 a | ±5.9 a | ±0.8 *,*,a | ±2.0 a | ±7.8 a,b | ±13.7 b | ±4.8 a | |||
5000 | - | - | 90.9 | 71.9 | 83.0 | 69.3 | 51.6 | 40.4 | 61.1 |
±6.6 a | ±6.7 a | ±0.6 *,a | ±18,9 a | ±12.4 a,b | ±4.0 *,b | ±1.7 *,a | |||
10,000 | 88.3 | 96.5 | 80.6 | 71.3 | 59.1 | 56.8 | 42.2 | 36.8 | 57.4 |
±1.1 a | ±0.1 a | ±0.8 *,a | ±7.0 a | ±0.2 *,*,*,a,b | ±11.3 a,b | ±20.7 b | ±3. *3 b | ±4.5 *,a,b | |
15,000 | 69.0 | 95.1 | - | - | - | - | - | - | |
±2.2 *,a | ±3.1 b | ||||||||
20,000 | 72.5 | 91.6 | - | - | - | - | - | - | |
±1.0 *,a | ±0.4 *,b |
PO43− (%) | CSOR | CVUL | CHLO | DCOM | DSPI | SOBL | SOBT | MKOM | MPUS |
---|---|---|---|---|---|---|---|---|---|
Control | 10.4 | 1.1 | 12.0 | 4.0 | 13.1 | 4.4 | 2.4 | 3.2 | 4.5 |
±0.0 a | ±0.8 b | ±3.9 a | ±2.8 b | ±0.8 a | ±2.4 a,b | ±1.9 b | ±1.7 b | ±2.6 a,b | |
500 | - | - | 10.0 | 3.8 | 5.0 | 4.5 | 5.1 | 1.6 | 2.7 |
±5.5 a | ±1.4 a | ±0.5 *,a | ±2.5 a | ±1.9 a | ±1.3 a,CHSP | ±0.7 a,CHSP | |||
1000 | - | - | 9.0 | 14.4 | 5.0 | 4.0 | 8.2 | 3.7 | 2.1 |
±3.1 a | ±7.3 a | ±0.1 *,a | ±1.5a,DECO | ±2.5 a | ±2.9a,DECO | ±1.6a,DECO | |||
5000 | - | - | 6.6 | 12.2 | 7.5 | 5.7 | 4.6 | 3.3 | 4.6 |
±3.3 a | ±7.6 a | ±1.2 *,*,a | ±4.1 a | ±2.3 a | ±2.7 a | ±3.9 a | |||
10,000 | 9.8 | 1.3 | 6.0 | 10.3 | 7.9 | 1.6 | 5.8 | 5.0 | 1.0 |
±0.8 a | ±1.0 b | ±2.6 a | ±1.8 b | ±0.6*,*,a | ±0.8 b | ±0.4 a,b | ±0.6 a,b | ±0.4 b | |
15,000 | 12.1 | 2.2 | - | - | - | - | - | - | - |
±1.3 a | ±1.3 b | ||||||||
20,000 | 10.4 | 2.4 | - | - | - | - | - | - | - |
±0.2 a | ±0.1 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figler, A.; B-Béres, V.; Dobronoki, D.; Márton, K.; Nagy, S.A.; Bácsi, I. Salt Tolerance and Desalination Abilities of Nine Common Green Microalgae Isolates. Water 2019, 11, 2527. https://doi.org/10.3390/w11122527
Figler A, B-Béres V, Dobronoki D, Márton K, Nagy SA, Bácsi I. Salt Tolerance and Desalination Abilities of Nine Common Green Microalgae Isolates. Water. 2019; 11(12):2527. https://doi.org/10.3390/w11122527
Chicago/Turabian StyleFigler, Aida, Viktória B-Béres, Dalma Dobronoki, Kamilla Márton, Sándor Alex Nagy, and István Bácsi. 2019. "Salt Tolerance and Desalination Abilities of Nine Common Green Microalgae Isolates" Water 11, no. 12: 2527. https://doi.org/10.3390/w11122527