On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data and Methodology
3. Results and Discussions
3.1. Multivariate Time-Series
3.2. The Relationship of Water Discharge Components (Qs and Qb) with SSSC
3.3. Bivariate Copula Functions
3.4. SSSC Estimations Assessments Performance
4. Conclusions and Perspectives
- Although the power rating curve presented a satisfactory R2 = 0.73, it was insufficient to estimate SSSC, because it did not account for scatters along the regression curve, caused by events with high SSSC and the hysteresis between the variables (rainfall vs. water discharge and base flow vs. SSSC).
- The evaluation of the SSSC differentiating the contribution of direct surface and base flows from total water discharge allowed us to see the role these components had in the sediment dynamics in this sub-basin. Thus SSSC was estimated through a sum of seasonal functions based on surface and base flow contributions. Considering other floodplain areas and aquifers, mainly at the sub-basin’s headwaters in the Amazon, future sediment dynamic research could take into account the potential role of base flow in the suspended sediment concentration.
- By considering the time-series’ marginal distributions in a bivariate Copula function, we reduced the PBIAS significantly to less than 6% and achieved a very good NSE of 0.83. Furthermore, the annual cycle could be reproduced satisfactorily. However, it is not only the stability of the time-series, which must be continuously evaluated to search for changes in the distributions’ parameters that can modify the Copula function; it is also necessary to consider that as a probabilistic technique it still fail to establish the physical understanding that relates the variables. Moreover, a further evaluation could consider using a multivariate Copula to estimate SSSC based on both (rainfall and discharge) in the same joint function.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guyot, J.-L.; Bazan, H.; Fraizy, P.; Ordoñez, J.; Armijos, E.; Laraque, A. Suspended Sediment Yields in the Amazon Basin of Peru: A First Estimation. In Water Quality and Sediment Behavior of the Future: Prediction for the 21st Century, Proceeding of the Symposium HS2005 at IUGG2007, Perugia, Italy, 2–13 July 2007; IAHS: Wallingford, UK, 2007; Volume 314. [Google Scholar]
- Armijos, E.; Crave, A.; Vauchel, P.; Fraizy, P.; Santini, W.; Moquet, J.-S.; Arevalo, N.; Carranza, J.; Guyot, J.-L. Suspended sediment dynamics in the Amazon River of Peru, J.S. Am. Earth Sci. 2013, 44, 75–84. [Google Scholar] [CrossRef]
- Vauchel, P.; Santini, W.; Guyot, J.-L.; Moquet, J.S.; Martinez, J.-M.; Espinoza, J.C.; Baby, P.; Fuertes, O.; Noriega, L.; Puita, O.; et al. A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme. J. Hydrol. 2017, 553, 35–48. [Google Scholar] [CrossRef]
- Ayes, I.; Armijos, E.; Espinoza-Villar, R.; Espinoza, J.C.; Molina-Carpio, J.; Ayala, J.M.; Gutierrez-Cori, O.; Martinez, J.M.; Filizola, N. Decline of fine suspended sediments in the Madeira River Basin (2003–2019). Water 2019, 11, 514. [Google Scholar] [CrossRef]
- Guyot, J.-L.; Roche, M.A.; Noriega, L.; Calle, H.; Quintanilla, J. Salinities and sediment transport in the Bolivian highlands. J. Hydrol. 1990, 113, 147–162. [Google Scholar] [CrossRef]
- Guyot, J.-L.; Filizola, N.; Quintanilla, J.; Cortes, J. Dissolved Solids and Suspended Sediment Yields in the Rio Madeira Basin, from the Bolivian Andes to the Amazon. In Erosion and Sediment Yield: Global and Regional Perspectives, Proceedings of the International Symposium Held at Exeter, Wallingford, UK, 15–19 July 1996; Walling, D.E., Webb, B.W., Eds.; IAHS: Wallingford, UK, 1996; Volume 236, pp. 55–63. ISBN 0-947571-89-2. [Google Scholar]
- Filizola, N.; Fraizy, P.; Guyot, J.-L.; Seyler, F.; Baby, P.; Herail, G. Actual erosion by rivers in the Bolivian Andes. In Proceedings of the 5th International Symposium on Andean Geodynamics, Toulouse, France, 16–18 September 2002. [Google Scholar]
- Latrubesse, E.M.; Restrepo, J.D. Sediment yield along the Andes: Continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology 2014, 216, 225–233. [Google Scholar] [CrossRef]
- McClain, M.E.; Naiman, R.J. Andean influences on the biogeochemistry and ecology of the Amazon River. BioScience 2008, 58, 325–336. [Google Scholar] [CrossRef]
- Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R. Exchange of sediment between the flood plain and channel of the Amazon River in Brazil. Geol. Soc. Am. Bull. 1998, 110, 450–467. [Google Scholar] [CrossRef]
- Pepin, E.; Guyot, J.-L.; Armijos, E.; Bazan, H.; Fraisy, P.; Moquet, J.S.; Noriega, J.; Ordonez, R.; Pombosa, P.; Vauchel, P. Climatic control on eastern Andean denudation rates (Central cordillera from Ecuador to Bolivia). J. S. Am. Earth Sci. 2013, 44, 85–93. [Google Scholar] [CrossRef]
- Aalto, R.; Dunne, T.; Guyot, J.L. Geomorphic controls on Andean denudation rates. J. Geol. 2006, 114, 85–99. [Google Scholar] [CrossRef]
- Safran, E.B.; Bierman, P.R.; Aalto, R.; Dunne, T.; Whipple, K.X.; Caffee, M. Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surf. Process. 2005, 30, 1007–1024. [Google Scholar] [CrossRef]
- Guyot, J.L.; Bourges, R.; Hoorelbecke, R.; Roche, M.A.; Calle, H.; Cortes, J.; Guzmán, M.C.B. Exportation de matieres en suspension des Andes vers l’Amazonie par le Rio Béni, Bolivie. In Sediment Budget Proceedings of the Porto Velho Symposium, Porto Velho, 1988; IAHS Publisher: Wallingford, UK, 1998; Volume 174, pp. 443–451. [Google Scholar]
- Miguez-Macho, G.; Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Günter, A.; Tomasella, J.; Pfeffer, J.; Ramillien, G.; Emilio, T.; Schietti, J.; Seoane, L.; Carvalho, J.S.; et al. The spatio-temporal variability of groundwater storage in the Amazon River Basin. Adv. Water Resour. 2018. [Google Scholar] [CrossRef]
- Misset, C.; Recking, A.; Legout, C.; Poirel, A.; Cazilhac, M.; Esteces, M.; Bertrand, M. An attempt to link suspended load hysteresis patterns and sediment sources configuration in alpine catchments. J. Hydrol. 2019, 576, 72–84. [Google Scholar] [CrossRef]
- Williams, G.P. Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol. 1989, 111, 89–106. [Google Scholar] [CrossRef]
- Lloyd, C.E.M.; Freer, J.E.; Johnes, P.J.; Collins, A.L. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Sci. Total Environ. 2016, 543, 388–404. [Google Scholar] [CrossRef]
- Lawler, D.M.; Petts, G.E.; Foster, I.D.L.; Harper, S. Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Sci. Total Environ. 2006, 360, 109–126. [Google Scholar] [CrossRef]
- Martinez, J.M.; Guyot, J.L.; Filizola, N.; Sondag, F. Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena 2009, 79, 257–264. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef]
- Bezak, N.; Rusjan, S.; Fijavz, M.K.; Mikos, M.; Sraj, M. Estimation of suspended sediment loads using copula functions. Water 2017, 9, 628. [Google Scholar] [CrossRef]
- Guo, A.; Chang, J.; Wang, Y.; Huang, Q. Variations in the runoff-sediment relationship of the Weine River basin based on the copula function. Water 2016, 8, 223. [Google Scholar] [CrossRef]
- You, Q.; Jiang, H.; Liu, Z.; Guan, Z. Probability analysis and control of river runoff-sediment characteristics based on pair-copula functions: The case of the Weihe River and Jinghe River. Water 2019, 11, 510. [Google Scholar] [CrossRef]
- Armijos, E.; Crave, A.; Espinoza, J.C.; Filizola, N.; Espinoza-Villar, R.; Ayes, I.; Fonseca, P.; Fraizy, P.; Gutierrez, O.; Vauchel, P.; et al. Amazon sediment flux predictability: A simple empirical model. Environ. Res. Comm. 2019, submitted. [Google Scholar]
- Kattan, Z.; GAc, J.Y.; Probst, J.L. Suspended sediment load and mechanical erosion in the Senegal Basin -Estimation of the surface runoff concentration and relative contributions of channel and slope erosion. J. Hydrol. 1987, 92, 59–76. [Google Scholar] [CrossRef]
- Duvert, C.; Gratiot, N.; Anguiano-Valencia, R.; Némery, J.; Mendoza, M.E.; Carlón-Allende, T.; Prat, C.; Esteves, M. Baseflow control on sediment flux connectivity: Insights from a nested catchment study in Central Mexico. Catena 2011, 87, 129–140. [Google Scholar] [CrossRef]
- Andermann, C.; Bonnet, S.; Crave, A.; Davy, P.; Longuevergne, L.; Gloaguen, R. Sediment transfer and hydrological cycle of Himalayan rivers in Nepal. C. R. Geosci. 2012, 344, 627–635. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Sörensson, A.; Ronchail, J.; Molina-Carpio, J.; Segura, H.; Gutierrez-Cori, O.; Ruscica, R.; Condom, T.; Wongchuig-Correa, S. Regional hydro-climatic changes in the Southern Amazon Basin (Upper Madeira Basin) during the 1982–2017 period. J. Hydrol. Reg. Stud. 2019. [Google Scholar] [CrossRef]
- Meybeck, M.; Laroche, L.; Dürr, H.H.; Syvitski, J.P.M. Global variability of daily total suspended solids and their fluxes in rivers. Glob. Planet Chang. 2003, 39, 65–93. [Google Scholar] [CrossRef]
- Forsberg, B.R.; Melack, J.M.; Dunne, T.; Barthem, R.B.; Goulding, M.; Paiva, R.C.; Sorribas, M.V.; Silva, U.L., Jr.; Weisser, S. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 2016, 12, e0182254. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jenkins, C.N.; Heilpern, S.; Madonado-Ocampo, J.A.; Carvajal-Vallejos, F.M.; Encalada, A.C.; Rivadeneira, J.F.; Hidalgo, M.; Cañas, C.M.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 2018, 4, eaao1642. [Google Scholar] [CrossRef]
- McQuarrie, N. The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Geol. Soc. Am. Bull. 2002, 114, 950–963. [Google Scholar] [CrossRef]
- Molina-Carpio, J.; Espinoza, J.C.; Vauchel, P.; Ronchail, J.; Caloir, B.G.; Guyot, J.-L.; Noriega, L. Hydroclimatology ot the Upper Madeira River basin: Spatio-temporal variability and trends. Hydrol. Sci. J. 2017, 62, 2150–3435. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Chavez, S.; Ronchail, J.; Junquas, C.; Takahashi, K.; Lavado, W. Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour. Res. 2015, 5, 3459–3475. [Google Scholar] [CrossRef]
- Molina-Carpio, J.; Espinoza, D.; Coritza, E.; Salcedo, F.; Farfán, C.; Mamani, L.; Mendoza, J. Clima y variabilidad espacial de la ceja de monte y andino húmedo. Ecol. Boliv. 2019, 54, 40–56. [Google Scholar]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite assisted precipitation climatology. Earth Syst. Sci. Data Discuss. 2015, 8. [Google Scholar] [CrossRef]
- Guyot, J.-L.; Jouanneau, J.-M.; Wasson, J.-G. Characterization of river bed and suspended sediments in the Rio Madeira drainage basin (Bolivian Amazonia). J. S. Am. Earth Sci. 1999, 12, 401–410. [Google Scholar] [CrossRef]
- BGR-UNESCO, Groundwater Resources of the World. Available online: https://www.bgr.bund.de/whymap/EN/Maps_Data/Gwr/whymap_ed2008_25m_g.html?nn=9930702 (accessed on 22 May 2019).
- NASA. Available online: http://www2.jpl.nasa.gov/srtm/ (accessed on 12 May 2017).
- HYBAM Observatory. Available online: http://www.ore-hybam.org/ (accessed on 6 January 2019).
- Climate Hazards Center. Available online: https://www.chc.ucsb.edu/data (accessed on 15 November 2019).
- Espinoza, J.C.; Ronchail, J.; Marengo, J.A.; Segura, H. Contrasting North-South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1982–2017). Clim. Dyn. 2019, 52, 5413–5430. [Google Scholar] [CrossRef]
- Satgé, F.; Roelland, D.; Bonnet, M.; Molina-Carpio, J.; Pillco, R. Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow-hydrological modelling in the Lake Titicaca region. Hydrol. Earth Syst. Sci. 2019, 23, 595–619. [Google Scholar] [CrossRef] [Green Version]
- Vauchel, P. Derniers développements du logiciel Hydraccess. In IRD: 30 ans en Équateur, Proceeding of the Scientific Seminar: IRD 30 años en Quito, Ecuador 11–16 October 2004; IRD: Quito, Ecuador, 2007; pp. 247–251. [Google Scholar]
- Lyne, V.D.; Hollick, M. Stochastic Time-Variable Rainfall-Runoff Modeling. In Institute of Engineers Australia National Conference; Institute of Engineers Australia: Barton, Australia, 1979; Volume 1979, pp. 89–93. [Google Scholar]
- Lim, K.J.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.-S.; Muthukrishnan, S.; Tripathy, D. Automated web gis based hydrograph analysis tool, what. J. Am. Water Resour. Assoc. 2005, 41, 1407–1416. [Google Scholar] [CrossRef]
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for base flow and recession analyses. J. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006; ISBN 9780387286594. [Google Scholar]
- Genest, C.; Favre, A. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar] [CrossRef]
- Brechmann, E.C.; Czado, C.; Aas, K. Truncated regular vines in high dimensions with applications to financial data. Can. J. Stat. 2012, 40, 68–85. [Google Scholar] [CrossRef]
- Dißmann, J.F.; Brechmann, E.C.; Czado, C.; Kurowicka, D. Selecting and estimating regular vine copulae and application to financial returns. Comput. Stat. Data Anal. 2013, 59, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, T.; Bárdossy, A.; Pegram, G.G.S.; Cullmann, J. Investigation of hydrological time series using copulas for detecting catchment characteristics and anthropogenic impacts. Hydrol. Earth Syst. Sci. 2016, 20, 2705–2720. [Google Scholar] [CrossRef] [Green Version]
- Erhardt, T. Predicting temperature time series using spatial vine copulae. Master Thesis Fakutalt für Mathematik, Technische Universität München. 2013. Available online: http://mediatum.ub.tum.de/node?id=1173363 (accessed on 15 December 2016).
- Pereira, G.A.A.; Veiga, A.; Erhardt, T.; Czado, C. A periodic spatial vine copula model for multi-site streamflow simulation. Electr. Power Syst. Res. 2017, 152, 9–17. [Google Scholar] [CrossRef]
- Maity, R. Statistical Methods in Hydrology and Hydroclimatology; Springer Nature: Singapore, Singapore, 2018. [Google Scholar]
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill: Washington, DC, USA, 1993; ISBN 978-0-07-171177-7. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org/ (accessed on 15 December 2016).
- Asquith, W. Lmomco—L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions; R Package Version 2.2.3; Texas Tech University: Lubbock, TX, USA, 2016. [Google Scholar]
- Delignette-Muller, M.L.; Pouillot, R.; Denis, J.B.; Dutang, C. Fitdistrplus: Help to Fit of a Parametric Distribution to Non-Censored or Censored Data R Package. Available online: http://cran.r-project.org/web/packages/fitdistrplus/index.html (accessed on 30 March 2012).
- Yan, J. Enjoy the Joy of Copulas: With a Package copula. J. Stat. Softw. 2007, 21, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kojadinovic, I.; Yan, J. Modeling Multivariate Distributions with Continuous Margins Using the copula R Package. J. Stat. Softw. 2010, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hofert, M.; Maechler, M. Nested Archimedean Copulas Meet R: The nacopula Package. J. Stat. Softw. 2011, 39, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hofert, M.; Kojadinovic, I.; Maechler, M.; Yan, J. Copula: Multivariate Dependence with Copulas. R Package Version 0.999-14 URL. Available online: http://CRAN.R-project.org/package=copula (accessed on 15 December 2016).
- Schepsmeier, U.; Stoeber, J.; Brechmann, E.C.; Graeler, B.; Nagler, T.; Erhardt, T. VineCopula: Statistical Inference of Vine Copulas. R Package Version 2.0.1. Available online: https://CRAN.R-project.org/package=VineCopula (accessed on 15 December 2016).
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, M.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Carrasco, N.; Bourges, J. Estudio del régimen del escurrimiento superficial en la cuenca andina del río Beni; Tesis de Ingeniería Civil, Universidad Mayor de San Andrés: La Paz, Bolivia, 1990; p. 90. [Google Scholar]
- Espinoza, J.C.; Marengo, J.A.; Roncahil, J.; Molina-Carpo, J.; Flores, L.N.; Guyot, J.-L. The extreme 2014 flood in south-western Amazon basin: The role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Santini, W.; Camenen, B.; Le Coz, J.; Vauchel, P.; Guyot, J.-L.; Lavado, W.; Carranza, J.; Paredes, M.A.; Pérez-Arévalo, J.J.; Arévalo, N.; et al. An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland. Earth Surf. Dyn. 2019, 7, 515–536. [Google Scholar] [CrossRef] [Green Version]
- Moquet, J.-S.; Guyot, J.-L.; Crave, A.; Viers, J.; Filizola, N.; Martinez, J.M.; Oliveira, T.C.; Hidalgo, L.S.; Lagane, C.; Lavado Casimiro, W.S.; et al. Amazon River dissolved load: Temporal dynamics and annual budget from the Andes to the ocean. Environ. Sci. Pollut. Res. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dependence | Type of Function Analyzed | Equation |
---|---|---|
Equation (3) Equation (4) | ||
Bivariate Copula | Equation (5) |
Percent Bias Equation (6) | |||
Nash-Sutcliffe Efficiency Equation (7) | |||
Linear Coefficient of determination Equation (8) | |||
Kendall’s Tau Equation (9) | |||
Performance Rating | PBIAS | NSE | R2 |
Very good | <±10 | 0.75 < NSE ≤ 1.00 | ≥0.60 |
Good | ±10 ≤ PBIAS < ±15 | 0.65 < NSE ≤ 0.75 | |
Satisfactory | ±15 ≤ PBIAS < ±25 | 0.50 < NSE ≤ 0.65 | |
Unsatisfactory | ≥±25 | ≤0.50 |
Kendall’s τ | R | Q | Q-Lag | SSSC |
---|---|---|---|---|
R | - | 0.57 | 0.70 | 0.72 |
Q | 0.57 | - | 0.61 | 0.65 |
Q-Lag | 0.70 | 0.61 | - | 0.65 |
SSSC | 0.72 | 0.65 | 0.65 | - |
Function | Kendall’s τ (–) | Linear R2 (–) | Max Underestimation/Max Overestimation (mg·L−1) | PBIAS (%) | NSE (–) |
---|---|---|---|---|---|
0.66 | 0.65 | −2400/4500 | 17.7 | 0.58 | |
0.72 | 0.72 | −2130/4140 | 5.0 | 0.71 | |
0.75 | 0.85 | −1600/2500 | 4.6 | 0.84 | |
0.75 | 0.83 | −1400/2600 | 5.2 | 0.83 |
Function | Kendall’s τ (–) | Linear R2 (–) | Max Underestimation/Max Overestimation (mg·L−1) | PBIAS (%) | NSE (–) |
---|---|---|---|---|---|
(0.38,0.85) | (0.34,0.95) | −3620/3435 | (−77,49) | (0.14,0.93) | |
2005 | 0.85 | 0.86 | −370/3130 | 46 | 0.86 |
2014 | 0.38 | 0.61 | −2900/430 | −77 | 0.61 |
(0.64,0.97) | (0.44,0.97) | −2435/3340 | (−73,29) | (0.35,0.94) | |
2005 | 0.91 | 0.93 | −440/2380 | 29 | 0.68 |
2014 | 0.83 | 0.85 | −1575/214 | −27 | 0.79 |
(0.53,0.91) | (0.78,0.97) | −1495/2640 | (−41,28) | (0.43,0.97) | |
2005 | 0.91 | 0.97 | −380/2050 | 28 | 0.77 |
2014 | 0.53 | 0.90 | −1000/610 | −7 | 0.90 |
(0.52,0.85) | (0.64,0.97) | −1630/2,410 | (–48,31) | (0.4,0.84) | |
2005 | 0.85 | 0.90 | −640/1910 | 22 | 0.75 |
2014 | 0.64 | 0.78 | −1500/920 | −10 | 0.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayes Rivera, I.; Callau Poduje, A.C.; Molina-Carpio, J.; Ayala, J.M.; Armijos Cardenas, E.; Espinoza-Villar, R.; Espinoza, J.C.; Gutierrez-Cori, O.; Filizola, N. On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016). Water 2019, 11, 2497. https://doi.org/10.3390/w11122497
Ayes Rivera I, Callau Poduje AC, Molina-Carpio J, Ayala JM, Armijos Cardenas E, Espinoza-Villar R, Espinoza JC, Gutierrez-Cori O, Filizola N. On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016). Water. 2019; 11(12):2497. https://doi.org/10.3390/w11122497
Chicago/Turabian StyleAyes Rivera, Irma, Ana Claudia Callau Poduje, Jorge Molina-Carpio, José Max Ayala, Elisa Armijos Cardenas, Raúl Espinoza-Villar, Jhan Carlo Espinoza, Omar Gutierrez-Cori, and Naziano Filizola. 2019. "On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016)" Water 11, no. 12: 2497. https://doi.org/10.3390/w11122497
APA StyleAyes Rivera, I., Callau Poduje, A. C., Molina-Carpio, J., Ayala, J. M., Armijos Cardenas, E., Espinoza-Villar, R., Espinoza, J. C., Gutierrez-Cori, O., & Filizola, N. (2019). On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016). Water, 11(12), 2497. https://doi.org/10.3390/w11122497