Spatial-Temporal Differences in Water Footprints of Grain Crops in Northwest China: LMDI Decomposition Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantification of the Water Footprint (WF) of Crop Production
2.2. LMDI Methodology
2.3. Data Collection
3. Results and Discussion
3.1. Water Footprint (WF) Accounting
3.2. Decomposition Analysis from the Perspective of Time
3.2.1. Virtual Water Content Effect
3.2.2. Crop Area Effect
3.2.3. Crop Structure Effect
3.2.4. Yield Effect
3.3. Total Water Footprint (WF) in Different Provinces and Regions
3.4. Decomposition Analysis from the Perspective of Space
3.4.1. Gansu-Shanxi
3.4.2. Qinghai-Shanxi
3.4.3. Ningxia-Shanxi
3.4.4. Xinjiang-Shanxi
4. Conclusions
4.1. Assessing the Ensemble Result of the Driving Effects
4.2. Implications for Conserving Agricultural Water in Northwest China
Author Contributions
Funding
Conflicts of Interest
References
- Cao, X.; Pute, W.U.; Wang, Y.; Zhao, X. Water Footprint of Grain Product in Irrigated Farmland of China. Water Resour. Manag. 2014, 28, 2213–2227. [Google Scholar] [CrossRef]
- Qin, L.; Jin, Y.; Duan, P.; He, H. Field-based Experimental Water Footprint Study of Sunflower Growth in a Semiarid Region of China. J. Sci. Food Agric. 2016, 96, 3266–3273. [Google Scholar] [CrossRef] [PubMed]
- Joshua, E.; Delphine, D.; Christoph, M.; Katja, F.; Markus, K.; Dieter, G.; Michael, G.; Martina, F.R.; Yoshihide, W.; Neil, B. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar]
- Shtull-Trauring, E.; Bernstein, N. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel. Sci. Total Environ. 2018, 622, 1438–1447. [Google Scholar]
- Wu, X.; Degefu, D.M.; Yuan, L.; Liao, Z.; He, W.; An, M.; Zhang, Z. Assessment of Water Footprints of Consumption and Production in Transboundary River Basins at Country-Basin Mesh-Based Spatial Resolution. Int. J. Environ. Res. Public Health 2019, 16, 703. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef]
- Sun, C.Z.; Liu, Y.Y.; Chen, L.X.; Zhang, L. The spatial-temporal disparities of water footprints intensity based on Gini coefficient and Theil index in China. Acta Ecol. Sin. 2010, 30, 1312–1321. [Google Scholar]
- Gonzalez Perea, R.; Camacho Poyato, E.; Montesinos, P.; Garcia Morillo, J.; Rodriguez Diaz, J.A. Influence of spatio temporal scales in crop water footprinting and water use management: Evidences from sugar beet production in Northern Spain. J. Clean. Prod. 2016, 139, 1485–1495. [Google Scholar] [CrossRef]
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N. The virtual water content of major grain crops and virtual water flows between regions in China. J. Sci. Food Agric. 2013, 93, 1427–1437. [Google Scholar] [CrossRef]
- Bulsink, F.; Hoekstra, A.Y.; Booij, M.J. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef]
- Yao, L.; Xu, J.; Zhang, L.; Pang, Q.; Zhang, C. Temporal-spatial decomposition computing of regional water intensity for Yangtze River Economic Zone in China based on LMDI model. Sustain. Comput. Inform. Syst. 2019, 21, 119–128. [Google Scholar] [CrossRef]
- Zou, M.; Kang, S.; Niu, J.; Lu, H. A new technique to estimate regional irrigation water demand and driving factor effects using an improved SWAT model with LMDI factor decomposition in an arid basin. J. Clean. Prod. 2018, 185, 814–828. [Google Scholar] [CrossRef]
- Bruneau, J.F.; Renzetti, S. Water Use Intensities and the Composition of Production in Canada. J. Water Resour. Plan. Manag. 2010, 136, 72–79. [Google Scholar] [CrossRef]
- Zhi, Y.; Yang, Z.; Yin, X.-A.; Hamilton, P.B.; Zhang, L. Evaluating and Forecasting the Drivers of Water Use in a City: Model Development and a Case from Beijing. J. Water Resour. Plan. Manag. 2016, 142, 04015042. [Google Scholar] [CrossRef]
- Ma, J.; Wang, D.; Lai, H.; Wang, Y. Water Footprint—An Application in Water Resources Research. Resour. Sci. 2005, 27, 96–100. [Google Scholar]
- Yang, H.; Pfister, S.; Bhaduri, A. Accounting for a scarce resource: Virtual water and water footprint in the global water system. Curr. Opin. Environ. Sustain. 2013, 5, 599–606. [Google Scholar] [CrossRef]
- Chunfu, Z.; Bin, C. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environ. Sci. Technol. 2014, 48, 12723–12731. [Google Scholar]
- Zhao, X.; Tillotson, M.R.; Liu, Y.W.; Guo, W.; Yang, A.H.; Li, Y.F. Index decomposition analysis of urban crop water footprint. Ecol. Model. 2017, 348, 25–32. [Google Scholar] [CrossRef]
- Xu, Y.; Kai, H.; Yu, Y.; Wang, X. Changes in water footprint of crop production in Beijing from 1978 to 2012: A logarithmic mean Divisia index decomposition analysis. J. Clean. Prod. 2015, 87, 180–187. [Google Scholar] [CrossRef]
- Deng, G.; Xu, Y.; Yu, Z. Accounting and change trend analysis of food production water footprint in China. Water Policy 2018, 20, 758–776. [Google Scholar] [CrossRef]
- Cheng, G.D.; Zhao, W.Z. Green Water and Its Research Progresses. Adv. Earth Sci. 2006, 21, 221–227. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Pute, W.U.; Sun, S.; Wang, Y.; Xiaolei, L.I.; Zhao, X. Research on the quantification methods for water footprint of crop production. J. Hydraul. Eng. 2017, 48, 651–660 and 669. [Google Scholar]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef]
- Egan, M. The Water Footprint Assessment Manual. Setting the Global Standard. Soc. Environ. Account. J. 2011, 31, 181–182. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.N.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Hatzigeorgiou, E.; Polatidis, H.; Haralambopoulos, D. CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy 2008, 33, 492–499. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Zhang, S.L.; Su, X.L.; Singh, V.P.; Olaitan, A.O.; Xie, J. Logarithmic Mean Divisia Index (LMDI) decompositionanalysis of changes in agricultural water use: A case study of the middle reaches of the Heihe River basin, China. Agric. Water Manag. 2018, 208, 422–430. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.J.; Geng, Y.; Francisco, M.J. China’s provincial grey water footprint characteristic and driving forces. Sci. Total Environ. 2019, 677, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Howarth, R.W.; Swaney, D.P.; Hong, B.G.; Guo, H.C. Enhanced N input to Lake Dianchi Basin from 1980 to 2010: Drivers and consequences. Sci. Total Environ. 2015, 505, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, L.Y.; Tan, Y.X.; Wang, L.L.; Shen, M.H. Decoupling Water Consumption and Environmental Impact on Textile Industry by Using Water Footprint Method: A Case Study in China. Water 2017, 9, 124. [Google Scholar] [CrossRef]
- Silva, C.S.D.; Weatherhead, E.K.; Knox, J.W.; Rodriguez-Diaz, J.A. Predicting the impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka. Agric. Water Manag. 2007, 93, 19–29. [Google Scholar] [CrossRef]
- Liu, J.; Zehnder, A.J.B.; Yang, H. Historical Trends in China’s Virtual Water Trade. Water Int. 2007, 32, 78–90. [Google Scholar] [CrossRef]
- Miguel, Á.D.; García, E.; Buestamante, I.D. Estimation of the virtual water trade between two Spanish regions: Castilla-la Mancha and Murcia. Water Sci. Technol. Water Supply 2010, 10, 831–840. [Google Scholar] [CrossRef]
- Yang, G.; He, X.L.; Zheng, T.G.; Maina, J.N.; Li, J.F.; Liu, H.L. Integrated agricultural irrigation management technique in the arid inland area, China. J. Food Agric. Environ. 2012, 10, 736–741. [Google Scholar]
- Zhang, Y.; Zhang, J.; Tang, G.; Chen, M.; Wang, L. Virtual water flows in the international trade of agricultural products of China. Sci. Total Environ. 2016, 557, 1–11. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N 2 O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Pongpinyopap, S.; Mungcharoen, T. Bioethanol water footprint: Life cycle optimization for water reduction. Water Sci. Technol. Water Supply 2015, 15, 395. [Google Scholar] [CrossRef]
Provinces | Year | WFv | WFy | WFs | WFa | Total Effect |
---|---|---|---|---|---|---|
Gansu-Shanxi | 2006 | 730.47 | −814.39 | −3909.69 | −762.83 | −4756.43 |
−15.36% | 17.12% | 82.20% | 16.04% | 100.00% | ||
2010 | −1934.19 | −836.72 | −3447.40 | −484.64 | −6702.94 | |
28.86% | 12.48% | 51.43% | 7.23% | 100.00% | ||
2015 | −3488.75 | 211.43 | −2963.61 | −139.80 | −6380.74 | |
54.68% | −3.31% | 46.45% | 2.19% | 100.00% | ||
2006 | −1457.79 | 832.38 | −3608.23 | −6111.72 | −10,345.35 | |
14.09% | −8.05% | 34.88% | 59.08% | 100.00% | ||
Qinghai-Shanxi | 2010 | −2468.22 | 1011.40 | −4321.00 | −7138.93 | −12,916.74 |
19.11% | −7.83% | 33.45% | 55.27% | 100.00% | ||
2015 | −2154.16 | 421.56 | −3775.10 | −7540.45 | −13,048.15 | |
16.51% | −3.23% | 28.93% | 57.79% | 100.00% | ||
2006 | −796.04 | 1710.96 | −1493.70 | −8105.45 | −8684.23 | |
9.17% | −19.70% | 17.20% | 93.34% | 100.00% | ||
Ningxia-Shanxi | 2010 | −2531.45 | 1596.71 | −2283.03 | −8303.18 | −11,520.94 |
21.97% | −13.86% | 19.82% | 72.07% | 100.00% | ||
2015 | −2141.53 | 1115.56 | −2305.43 | −8393.83 | −11,725.23 | |
18.26% | −9.51% | 19.66% | 71.59% | 100.00% | ||
2006 | −2721.68 | 4994.13 | −6321.59 | 464.77 | −3584.37 | |
75.93% | −139.33% | 176.37% | −12.97% | 100.00% | ||
Xinjiang-Shanxi | 2010 | −5141.07 | 4949.70 | −5178.35 | 1560.27 | −3809.45 |
134.96% | −129.93% | 135.93% | −40.96% | 100.00% | ||
2015 | −5207.30 | 4996.13 | −4819.70 | 4122.10 | −908.76 | |
573.01% | −549.77% | 530.36% | −453.60% | 100.00% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Wang, Y.; Zhang, C.; Zhang, L. Spatial-Temporal Differences in Water Footprints of Grain Crops in Northwest China: LMDI Decomposition Analysis. Water 2019, 11, 2457. https://doi.org/10.3390/w11122457
Shi C, Wang Y, Zhang C, Zhang L. Spatial-Temporal Differences in Water Footprints of Grain Crops in Northwest China: LMDI Decomposition Analysis. Water. 2019; 11(12):2457. https://doi.org/10.3390/w11122457
Chicago/Turabian StyleShi, Changfeng, Yanying Wang, Chenjun Zhang, and Lina Zhang. 2019. "Spatial-Temporal Differences in Water Footprints of Grain Crops in Northwest China: LMDI Decomposition Analysis" Water 11, no. 12: 2457. https://doi.org/10.3390/w11122457
APA StyleShi, C., Wang, Y., Zhang, C., & Zhang, L. (2019). Spatial-Temporal Differences in Water Footprints of Grain Crops in Northwest China: LMDI Decomposition Analysis. Water, 11(12), 2457. https://doi.org/10.3390/w11122457